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Resumen

En este trabajo, se van a estimar mediante diferentes métodos propios del análisis modal expe-
rimental los parámetros modales de una viga en voladizo ensayada en el laboratorio.

Primero se hace un breve repaso sobre el análisis modal introduciendo los conceptos clave del
mismo. Luego se describen los métodos empleados en este trabajo, peak picking, mode picking y el
método de Ibrahim, haciendo un profundo análisis de este último a partir de un ejemplo teórico.

Posteriormente, se calculan analíticamente las frecuencias naturales y los modos de vibración de
la viga a ensayar. Por último, se comparan los resultados teóricos con los obtenidos mediante las
distintas técnicas de estimación de parámetros a partir de los datos experimentales.
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Abstract

In this project, the modal parameters of a cantilever beam tested in the laboratory will be estimated
by different methods from experimental modal analysis.

To this end, a brief review of modal analysis is presented, introducing its key concepts. Then, the
methods used in this project, peak picking, mode picking and Ibrahim Time Domain method, are
described, with a detailed analysis of the latter based on a theoretical example.

Subsequently, the natural frequencies and vibration modes of the beam to be tested are analytically
calculated. Finally, the theoretical results are compared with those obtained using the different
parameter estimation techniques applied to the experimental data.
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1 Introducción

Ala hora de diseñar una estructura o sistema mecánico, uno de los aspectos a tener en cuenta
es saber qué respuesta tendrá ante los estímulos a los que se someta, es decir, conocer el

desplazamiento, velocidad y aceleración al aplicar una fuerza. Los cambios de estas magnitudes
pueden clasificarse en movimientos oscilatorios, en los que la magnitud oscila alrededor de un punto
de equilibrio, y los no oscilatorios. La teoría de vibraciones se ocupa de estudiar el movimiento
oscilatorio.

1.1 Contexto histórico

La primera contribución en este campo se remonta hasta el siglo XVII cuando Galileo halló la
relación entre la frecuencia del péndulo simple y su longitud. En ese mismo siglo, Isaac Newton,
basándose en los estudios de Galileo, enunció las leyes del movimiento que relacionan el movimiento
de un objeto con las fuerzas que actúan sobre el mismo. Sin duda, para describir las ecuaciones del
movimiento de sistemas vibratorios, la segunda ley de Newton ha sido la más importante de todas.
Posteriormente, otros científicos fueron aportando nuevas herramientas para hallar las ecuaciones
del movimiento de un sistema. En el siglo XVIII, D’Alembert incluyó las fuerzas de inercia en
la segunda ley de Newton tratándolas como una fuerza aplicada más, en lo que se conoce como
el principio de D’Alembert. Recogiendo las ideas de Newton y D’Alembert, Lagrange desarrolló
unas ecuaciones que permitían formular las ecuaciones diferenciales del sistema dinámico usando
expresiones escalares de la energía del mismo, las ecuaciones de Lagrange. De esta manera se
facilitaba la formulación de las ecuaciones para sistemas con múltiples grados de libertad.

Otras contribuciones importantes a la teoría de vibraciones fueron las de Hooke, que enunció
que la tensión en un punto de un cuerpo elástico es proporcional a la deformación en dicho punto.
Euler y Bernoulli obtuvieron la ecuación diferencial que rige la vibración de vigas para pequeñas
deformaciones. Además, Bernoulli demostró que un sistema con N masas tenía N modos de
vibración independientes y formuló el principio de superposición en el que el desplazamiento de un
sistema viene dado como una suma de sus modos de vibración.

La teoría moderna de las vibraciones fue en gran medida desarrollada por Lord Rayleigh, entre
sus contribuciones están el método de Rayleigh, que sirve para obtener las frecuencias naturales
usando el principio de conservación de la energía, y la corrección de la teoría de vigas al introducir
el término de la inercia rotacional para mejorar el modelo. Más adelante, Timoshenko volvería
a mejorar la teoría de vigas al introducir la deformación por esfuerzo cortante en el modelo de
vibración de vigas. Otra de las contribuciones más usadas en el análisis de vibraciones de sistemas
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2 Capítulo 1. Introducción

mecánicos son las series de Fourier, que permiten expresar funciones periódicas como una suma de
funciones armónicas [11].

La teoría de vibraciones se aplica en todo tipo de campos. Por ejemplo, al construir edificios y
puentes se tienen en cuenta para conseguir que las estructuras sean seguras, las suspensiones de los
vehículos se diseñan de forma que, al circular, el habitáculo sea confortable para los pasajeros e
incluso al fabricar instrumentos musicales, para controlar el sonido que generan. En todos ellos, el
objetivo final es satisfacer las necesidades del ser humano.

En el ámbito de la ingeniería, las vibraciones influyen en los sistemas en gran medida, pudiendo
incluso causar fallos mecánicos catastróficos en el mismo si son excesivas. Es por ello que se hace
necesario determinar qué parámetros de la estructura son los que influyen en su respuesta frente a
distintas excitaciones. Estos parámetros son las frecuencias naturales, los modos de vibración y los
factores de amortiguamiento del sistema, y dependen de la masa, rigidez y amortiguamiento del
mismo. Hay varias formas de calcular los parámetros modales: hacer modelos teóricos del sistema
de los que obtener las ecuaciones de movimiento, usar el método de los elementos finitos (MEF) o
mediante ensayos experimentales. Esta última vía se conoce como análisis modal experimental.

1.2 Introducción al análisis modal experimental

Esta técnica surgió alrededor de 1940 con el objetivo de comprender el comportamiento dinámico
de las aeronaves. Sin embargo, hasta finales de la década de los 60, el progreso fue lento debido a
la falta de medios disponibles en esa época. No fue hasta principios de los 70, con la llegada de
los analizadores de espectro por transformada rápida de Fourier (FFT), analizadores de función de
transferencia, y sistemas de adquisición y analizadores de datos discretos, además de ordenadores
digitales más pequeños, baratos y con mayor capacidad de procesamiento de datos, cuando realmente
se produjeron grandes avances en este campo. En ese momento se sentaron las bases de las técnicas
usadas hasta hoy [3].

El análisis modal experimental tiene como objetivo conseguir un modelo matemático que describa
el comportamiento dinámico de un sistema. Para ello, el proceso se compone de las siguientes fases:

• Calibración de los instrumentos de medida y preparación de las condiciones del ensayo.
• Toma digital de medidas, tanto de entrada como de salida, a partir del ensayo realizado.
• Tratamiento de los datos para la obtención de los parámetros modales.
• Validación de los resultados.

Una vez que se estiman y validan los parámetros modales, el modelo matemático puede definirse
a partir de las frecuencias naturales y los factores de amortiguamiento o como un sistema masa-
muelle-amortiguador. Estos resultados pueden aplicarse para:

• Predecir el comportamiento de una estructura frente a la acción de fuerzas dinámicas.
• Estimar propiedades materiales, como la fricción o resistencia a fatiga, bajo cargas dinámicas.
• Validar modelos teóricos o modelos de elementos finitos, para luego estimar con ellos el

comportamiento dinámico frente a cargas más complejas.
• Identificar problemas estructurales, por ejemplo grietas, en puentes, maquinaria o turbinas de

aviones.
• Cambios de diseño en la estructura para mejorar su comportamiento dinámico.
• Analizar el ensamblaje de componentes que conforman un sistema complejo. (Figura 1.1).
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(a) (b)

Figura 1.1 Componentes y ensamblaje de la estructura de un helicóptero: (a) sistema completo; (b)
componentes y tipos de uniones [4].

Debido a su amplia gama de aplicaciones en el mundo de la ingeniería, es una técnica muy usada
actualmente.

1.3 Objetivos y estructura del documento

El objetivo de este trabajo es aplicar el análisis modal experimental a una estructura real sencilla,
en este caso una viga en voladizo, para estimar los parámetros modales del sistema usando el
peak picking, el mode picking y el método de Ibrahim en el dominio del tiempo (ITD). De esta
manera, este trabajo sirve como un primer acercamiento al análisis modal experimental para, en un
futuro, usarlo en estructuras más complejas o con métodos más recientes que han probado ser más
versátiles.

La estructura del proyecto se compone de 7 capítulos que se resumen a continuación:

• Capítulo 1: en él se aborda un repaso histórico de la teoría de vibraciones y los ámbitos que
engloba en la vida cotidiana. Luego, se explican los orígenes del análisis modal experimental,
su metodología y sus aplicaciones en el mundo de la ingeniería.

• Capítulo 2: en este capítulo se profundiza en el análisis modal, diferenciando entre teórico y
experimental. Dentro del análisis modal experimental, se clasifican las técnicas de estimación
según sus características intrínsecas y se presentan dos de los métodos usados, el peak picking
y el mode picking.

• Capítulo 3: dentro de este capítulo se desarrolla el fundamento teórico del método de Ibrahim
y sus modificaciones para adaptarse a la realidad de la experimentación. Por último, se
explican el “Modal Confidence Factor” (MCF) y el “Modal Assurance Criterion” (MAC)
como criterios para validar los resultados obtenidos.

• Capítulo 4: en él se aplica el método de Ibrahim a un modelo teórico de tres grados de libertad
para comprender el funcionamiento del mismo y cuáles de sus parámetros tienen mayor
influencia en la exactitud de las estimaciones. También se usan los criterios de validación a
los resultados obtenidos para entender cómo se emplean y si las estimaciones son correctas.
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• Capítulo 5: se presenta la teoría de vigas de Euler-Bernoulli, y con ella se obtienen analítica-
mente las frecuencias naturales y los modos de vibración de la viga en voladizo que se ensaya
en el laboratorio.

• Capítulo 6: en este capítulo se estiman los parámetros modales del sistema ensayado en el la-
boratorio mediante las técnicas desarrolladas en esta memoria. Los resultados experimentales
se corroboran por comparación directa de los parámetros modales y aplicando los criterios
de validación y, por último, se comparan respecto al modelo teórico.

• Capítulo 7: se exponen las conclusiones finales tras el trabajo realizado y las propuestas de
mejora y sugerencias para investigaciones futuras.



2 Análisis modal

El análisis modal surge para describir el comportamiento dinámico de un sistema a partir de
sus parámetros modales, que son las frecuencias naturales, los factores de amortiguamiento

y los modos de vibración. Con esta información se puede conocer cómo va a actuar el sistema en
cualquier circunstancia. Dichos parámetros pueden ser obtenidos de forma teórica o experimental.

2.1 Análisis modal teórico

En el análisis modal teórico, los parámetros modales se calculan describiendo el sistema a partir
de sus propiedades de masa, rigidez y amortiguamiento para definir la ecuación de movimiento
del mismo. Tras obtenerlos, se puede conocer la respuesta del sistema frente a cualquier excitación.
(Figura 2.1).

Figura 2.1 Metodología del análisis modal teórico.

En el caso de tener un sistema conN grados de libertad y amortiguamiento genérico, su ecuación
de movimiento ante vibración libre viene dada por:

mẍ+ cẋ+ kx = 0,x ∈ Rn (2.1)

éste puede transformarse en un sistema de primer orden a partir de las siguientes ecuaciones

mẍ+ cẋ+ kx = 0

mẋ−mẋ = 0
(2.2)

que puesto en forma matricial se representa como

Aẏ +By = 0, y ∈ R2n (2.3)

5



6 Capítulo 2. Análisis modal

habiendo un total de 2N ecuaciones cuyos términos se definen como

A =

(
0 m
m c

)
; ẏ =

(
ẍ
ẋ

)
; B =

(
−m 0
0 k

)
; y =

(
ẋ
x

)
(2.4)

para este sistema de ecuaciones diferenciales, las soluciones de prueba serían del tipo

y = ψeλt (2.5)

donde ψ ∈ C2n. Al introducir esta expresión en la ecuación 2.3 se llega al problema de autovalores
y autovectores descrito en la ecuación 2.6.

(λA+B)ψ = 0 (2.6)

Por la teoría de vibraciones, se conoce que los 2N autovalores obtenidos contienen los N polos
del sistema y sus conjugados, que vienen definidos por las frecuencias naturales y los factores de
amortiguamiento para cada modo de vibración del sistema como:

λr = −ξr(ωn)r ± j(ωn)r
√

1− ξ2r (2.7)

en cuanto a los 2N autovectores, de tamaño 2N × 1, están asociados a cada polo r y su conjugado.
La forma que tienen es:

ψr =

(
ψ1,r

ψ2,r

)
=

(
λrφr

φr

)
(2.8)

siendo φr el modo de vibración r, de tamaño N × 1, del sistema.

Este cálculo para sistemas con varios grados de libertad puede ser una tarea laboriosa. Sin
embargo, en la realidad, esto puede complicarse mucho más porque la geometría del sistema a
describir dificulta la definición de las matrices de masa, amortiguamiento o rigidez, o porque la
cantidad de grados de libertad sea inmensa. Por suerte, gracias al avance de la tecnología, existen
técnicas como el método de los elementos finitos que permiten discretizar un sistema muy complejo
en pequeños subdominios más simples de analizar. Definiendo las propiedades materiales del
sistema, su geometría y las condiciones de contorno en las que se encuentra, se obtienen las matrices
de masa, rigidez y amortiguamiento para cada elemento. Por último, se ensamblan para construir
las matrices del sistema completo y así conseguir aproximar los parámetros modales.

2.2 Análisis modal experimental

Esta técnica obtiene los parámetros modales de un sistema real mediante la realización de ensayos
en los que se registre la respuesta de la estructura frente a una excitación, (figura 2.2). Los ensayos
pueden realizarse en condiciones de operación de la estructura o en un entorno fuera del rango de
servicio de la estructura donde las condiciones estén bien controladas. Esta segunda opción suele
ser más usada, ya que ofrece resultados más precisos y con mayor información.

Figura 2.2 Metodología del análisis modal experimental.
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Para realizar los ensayos son necesarios varios instrumentos: excitadores (shakers), sensores
de fuerza y desplazamiento, velocidad o aceleración, sistemas de adquisición de datos, filtros y
analizadores de la señal. A continuación, en la figura 2.3 se muestra un esquema de cómo sería el
montaje de un ensayo experimental.

Figura 2.3 Elementos del montaje para un ensayo experimental [13].

Una vez tomados los datos del experimento realizado, es necesario usar una o varias de las técnicas
de estimación de parámetros modales. Estas pueden clasificarse de varias maneras atendiendo a las
características del método usado. A continuación, se va a profundizar en algunas de ellas.

2.2.1 Clasificación de los métodos de estimación de parámetros modales

Métodos SDOF y MDOF

La respuesta dinámica de un sistema puede expresarse como una combinación de sus modos de
vibración. Sin embargo, si en un determinado rango de frecuencias se puede suponer que sólo uno de
los modos tiene relevancia, sus parámetros pueden calcularse por separado. Bajo estas condiciones,
se engloban a los métodos SDOF. Su principal ventaja es su rapidez de cálculo. Por contra, están
sujetos a la restricción de que sus modos estén bien desacoplados, hecho que rara vez ocurre. Para
estimar con mayor exactitud los parámetros modales es necesario tener en cuenta varios modos a la
vez. Esta forma de actuar es propia de los métodos MDOF.

Estimaciones locales frente a estimaciones globales

La respuesta impulsiva observada en i debida a la excitación en j viene descrita como:

hij(t) =

N∑
r=1

φire
λrt

1

ar
φjr + φ∗

ire
λ∗
rt

1

a∗r
φ∗
jr (2.9)

De esta expresión pueden obtenerse la siguiente información:

• Los polos λr no dependen de la salida i ni de de la entrada j.
• Los coeficientes de los modos, φir, son independientes del lugar donde se excite, j.
• Los factores de participación modal, 1

ar
φjr, no dependen del punto observado, i.
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Los métodos basados en estos tres principios generan estimaciones globales. En las estimaciones
locales se calculan varios valores de un mismo parámetro. Esto es una desventaja, ya que es necesario
un tratamiento de los resultados en base al criterio del usuario.

Una entrada o múltiples entradas

Los métodos que usan varias entradas tienen la capacidad de identificar polos muy próximos o
incluso dobles. Además, puede demostrarse que estos métodos permiten hacer estimaciones globales
de los coeficientes de los modos debido a la independencia de los mismos respecto al lugar donde
se excita, j.

Identificación en el dominio del tiempo o en el dominio de la frecuencia

En el análisis en el dominio del tiempo se trabaja con las señales de entrada y salida registradas
durante una ventana temporal. En cambio, en el dominio de la frecuencia se usan las relaciones
entre las señales de entrada y salida en función de la frecuencia. Las ventajas de los métodos en el
dominio del tiempo con respecto a la frecuencia se detallan a continuación:

• Las técnicas de estimación en el dominio del tiempo suelen estar mejor condicionadas
numéricamente que las usadas en el dominio de la frecuencia. Debido a esto, si los datos
captados incluyen mucho ruido suele ser mejor opción aplicar los métodos en el dominio del
tiempo.

• Evitan los errores asociados al procesamiento de las señales, como el leakage o el aliasing,
propios de los análisis en el dominio de la frecuencia.

• Suelen ser más adecuados cuando la banda de frecuencias de interés es muy grande.
• Son más adecuados para sistemas con poco amortiguamiento, ya que la amplitud de la

respuesta tarda más tiempo en atenuarse pudiendo así usar una gran cantidad de registros. En
el dominio de la frecuencia, los picos de resonancia se generan con pocos puntos debido a
que son muy estrechos dificultando la estimación. (Figura 2.4).

(a) (b)

Figura 2.4 Muestreo de datos para sistemas ligeramente amortiguados.

Por contra, presentan los siguientes inconvenientes:

• Cuando los modos fuera de la banda de interés tienen importancia, los métodos en el dominio
del tiempo no pueden considerar sus efectos. En cambio, los métodos de estimación en el
dominio de la frecuencia sí pueden aproximar esta situación.

• En sistemas muy amortiguados, apenas se disponen de datos útiles en el dominio de tiempo
por la corta duración de la respuesta. En el dominio de la frecuencia, la anchura de los picos
de resonancia cubre una amplia parte del espectro, por lo que es preferible usar este tipo de
métodos. (Figura 2.5).
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(a) (b)

Figura 2.5 Muestreo de datos para sistemas muy amortiguados.

2.2.2 Peak picking y mode picking

El peak picking es un método SDOF de estimaciones locales que calcula las frecuencias naturales y
el amortiguamiento de un sistema de forma aproximada, ya que se basa en la hipótesis de que los
modos están desacoplados. Para calcular los parámetros mencionados anteriormente, el método
trabaja con la función de respuesta en frecuencia, ya sea en posición o aceleración. El procedimiento
es el siguiente.

En primer lugar, las estimaciones de las frecuencias naturales se corresponden con los puntos
donde la función de respuesta en frecuencia tiene un máximo. Luego, se calculan los factores de
amortiguamiento utilizando el método del ancho de banda. Este método ofrece buenos resultados
sólo cuando los modos se encuentran en rangos de frecuencia lejanos, el amortiguamiento del
sistema es pequeño y se dispone de la suficiente resolución en el dominio de la frecuencia. Si se dan
estas condiciones, el factor de amortiguamiento, ξr, para la frecuencia natural identificada, (ωn)r,
puede calcularse según [1] como:

ξr =
ω2
b − ω2

a

(2(ωn)r)
2

(2.10)

siendo ωb y ωa las frecuencias por encima y por debajo del valor de (ωn)r respectivamente, cuyo
valor de FRF es igual a 1√

2
FRF en el pico. Para sistemas con poco amortiguamiento, la ecuación

2.10 puede simplificarse así.
ξr =

ωb − ωa

2(ωn)r
(2.11)

Una vez obtenidos la frecuencia natural y el factor de amortiguamiento, los polos del sistema
pueden aproximarse según la ecuación 2.12.

λr = −ξr(ωn)r + j(ωn)r
√

1− ξ2r (2.12)

En la figura 2.6 se representa una gráfica que muestra cómo se aplica el peak picking para
identificar las frecuencias naturales.

Para estimar los modos de vibración se recurre al mode picking. Tiene las mismas características
que el peak picking. Es un método SDOF de estimaciones locales en el dominio de la frecuencia,
sólo se diferencian en los parámetros modales que calcula cada uno. Para explicar cómo se obtienen
los modos de vibración con este método, se parte de la expresión teórica de la matriz de funciones
de respuesta en frecuencia para sistemas con amortiguamiento genérico y N grados de libertad.

H(ω) =
N∑
r=1

φr
1

−λr + jω

1

ar
φT

r +φ∗
r

1

−λ∗r + jω

1

a∗r
φ∗

r
T (2.13)
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Figura 2.6 Método peak picking.

En el caso de hacer la suposición de que en un cierto rango de frecuencias sólo tiene importancia
uno de los modos del sistema, la ecuación anterior se puede simplificar a

H(ω) = φr
1

−λr + jω

1

ar
φT

r +φ∗
r

1

−λ∗r + jω

1

a∗r
φ∗

r
T +UR− LR

ω2
(2.14)

donde los términos UR y LR son matrices constantes que tienen en cuenta la influencia de los
modos que están por encima y por debajo de la banda de frecuencia estudiada, respectivamente.
Para la frecuencia (ωn)r, si se desprecian los términos residuales, se puede hacer una estimación
aproximada del valor de la función de respuesta en frecuencia como:

Hij((ωn)r) ≈ φir
1

−λr + j(ωn)r

1

ar
φjr ≈ φir

1

−ξr(ωn)r

1

ar
φjr. (2.15)

siendo necesario haber estimado previamente los polos del sistema para poder obtener los modos
del mismo.



3 Método de Ibrahim

El método de Ibrahim para el dominio del tiempo (ITD) [3, 6, 8, 7, 9] es un método MDOF que
permite estimar con carácter global los parámetros modales de un sistema. Calcula los polos

y los modos complejos en un único análisis a partir de la resolución de un problema de autovalores
y autovectores. Para ello, se pueden usar varios registros de la respuesta del sistema ensayado a la
vez, ya sea en desplazamiento, velocidad o aceleración, sin que sea necesario conocer la fuerza de
excitación. Esto se debe a que el ITD utiliza datos tomados de la respuesta en vibración libre, por lo
que se usan los registros en instantes posteriores a la excitación para que su influencia se reduzca.

3.1 Marco teórico

Suponiendo un sistema lineal con N grados de libertad y amortiguamiento genérico, para obtener
su respuesta en vibración libre es necesario conocer los polos y los modos del mismo. En las
ecuaciones de la 2.1 a la 2.8 se detalla la forma de hacerlo. Una vez obtenidos los autovectores, el
sistema puede diagonalizarse y resolverse para cada una de las coordenadas modales.

żr − λrzr = 0 → zr(t) = zr(0)e
λrt, (r = 1, 2, ..., 2N) (3.1)

La respuesta en vibración libre del sistema puede escribirse en las coordenadas originales desha-
ciendo el cambio de coordenadas de la siguiente forma:

x(t) =
2N∑
r=1

ψ2rzr(t) =
2N∑
r=1

ψ2rzr(0)e
λrt =

2N∑
r=1

zre
λrt (3.2)

donde ψ2r es el vector que contiene las N filas de la mitad inferior del autovector r, es decir, el
modo r. Por tanto, zr sigue siendo un modo de vibración, ya que se ha construido multiplicando
ψ2r por una constante, zr(0), que es el valor inicial de la coordenada modal.

Haciendo uso de la expresión anterior, la respuesta del sistema puede expresarse como

[ x(t1) ... x(t2N ) ] = [ z1 ... z2N ]

 eλ1t1 ... eλ1t2N

...
...

eλ2N t1 ... eλ2N t2N

 (3.3)

que escribiéndose de forma compacta queda como

X = ZΛ (3.4)

11
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repitiendo la ecuación 3.3 para respuestas desfasadas un tiempo ∆t3, (otras variaciones temporales
∆t1 y ∆t2 se usarán más adelante), respecto a las de la ecuación 3.3 se obtiene

[ x(t1 +∆t3) ... x(t2N +∆t3) ] =

[ z1 ... z2N ]

 eλ1(t1+∆t3) ... eλ1(t2N+∆t3)

...
...

eλ2N (t1+∆t3) ... eλ2N (t2N+∆t3)

 (3.5)

que es igual a
[ x(t1 +∆t3) ... x(t2N +∆t3) ] =

[
z1e

λ1∆t3 ... z2Ne
λ2N∆t3

] eλ1t1 ... eλ1t2N

...
...

eλ2N t1 ... eλ2N t2N

 (3.6)

que puede expresarse de forma análoga a la ecuación 3.4 como

X̄ = Z̄Λ (3.7)

combinando las ecuaciones 3.4 y 3.7 se llega a[
X
X̄

]
=

[
Z
Z̄

]
Λ (3.8)

que puede resumirse en la ecuación 3.9.

χ = ΘΛ (3.9)

A continuación, si se aplica una variación temporal ∆t1 a la ecuación 3.8 se obtiene la siguiente
matriz

χ̂ =

[
X̂
ˆ̄X

]
=

[
[ x(t1 +∆t1) ... x(t2N +∆t1) ]

[ x(t1 +∆t3 +∆t1) ... x(t2N +∆t3 +∆t1) ]

]
(3.10)

que también puede expresarse así[
x(t1 +∆t1) ... x(t2N +∆t1)

x(t1 +∆t3 +∆t1) ... x(t2N +∆t3 +∆t1)

]
=

[
z1e

λ1∆t1 ... z2Ne
λ2N∆t1

z1e
λ1(∆t3+∆t1) ... z2Ne

λ1(∆t3+∆t1)

] eλ1t1 ... eλ1t2N

...
...

eλ2N t1 ... eλ2N t2N


(3.11)

o de forma compacta como en la ecuación 3.12.

χ̂ =

[
Ẑ
ˆ̄Z

]
Λ = Θ̂Λ (3.12)

Eliminando Λ de las ecuaciones 3.9 y 3.12 se obtiene el problema de autovalores y autovectores
siguiente.
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χ̂χ−1Θ = Θ̂ → χ̂χ−1θr = θ̂r → χ̂χ−1θr = θre
λr∆t1 (3.13)

De esta ecuación se observa que las primeras N componentes de cada autovector r, θr, coinciden
con el modo r, zr, del sistema. Sin embargo, los polos del sistema, λr, no se corresponden con los
autovalores obtenidos, eλr∆t1 , por lo que es necesario hacer la operación descrita en la ecuación
3.14.

αr = eλr∆t1 → λr =
ln(αr)

∆t1
= ar + jbr (3.14)

A partir de los polos, se pueden obtener las frecuencias naturales, (ωn)r, y los factores de
amortiguamiento ξr para cada modo r como sigue

ar = −(ωn)r ξr (3.15)

br = (ωd)r = (ωn)r
√

1− ξ2r (3.16)

(ωn)r =
√
a2r + b2r (3.17)

ξr =
−ar√
a2r + b2r

(3.18)

siendo ar la parte real del polo y br la parte imaginaria.

Es importante mencionar que los instantes t1,t2,...,t2N no tienen por qué estar equidistanciados
y no hay restricciones respecto a un mínimo o máximo espaciado entre ellos. No obstante, siendo
pragmáticos a la hora de aplicar el método, es conveniente que los registros estén equiespaciados y
que se encuentren en el tramo inicial de la respuesta debido a que se está trabajando con la vibración
libre del sistema. El único parámetro cuyo valor debe obedecer una ecuación, de acuerdo con [7],
es ∆t1, al que se le impone que:

1

∆t1
> 2fmax (3.19)

siendo fmax el valor de la máxima frecuencia natural expresada en Hertzios que el método puede
identificar correctamente. Debido a esto, es recomendable que la frecuencia de adquisición de datos
del ensayo, fs, sea lo más grande posible para así poder hacer un análisis en un amplio rango de
frecuencias.

El método descrito hasta ahora está basado en la respuesta ante vibración libre del sistema en una
situación ideal. Sin embargo, en la práctica, estas condiciones no se cumplen debido a que:

• Las medidas recogidas están contaminadas por el ruido.
• El número de modos que contribuyen a la respuesta se desconoce.
• El número de sensores usados no es igual al número de modos desconocidos.

dificultando la estimación de los parámetros modales del sistema. Para mejorar la precisión de la
estimación obtenida, se aplican las siguientes modificaciones al método original.

3.1.1 Solución del problema de autovalores en el sentido de mínimos cuadrados

Con el objetivo de atenuar los efectos del ruido sobre la matriz χ̂χ−1, las matrices χ y χ̂ se
construyen incluyendo registros de la respuesta en más de 2N instantes de tiempo, de forma que
tienen un tamaño 2N × 2l, siendo 2l la cantidad de instantes escogidos cuyo valor es recomendable
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que sea mucho mayor que 2N . Esto hace que ni χ ni Λ sean matrices cuadradas, quedando un
sistema de ecuaciones sobredeterminado. Para evitarlo, se usa la transpuesta de χ para generar un
nuevo problema de autovalores y autovectores resuelto en el sentido de mínimos cuadrados:

χχT = ΘΛχT

χ̂χT = ΘΛχT
→

(
χ̂χT

) (
χχT

)−1
θr = θre

λr∆t1 (3.20)

3.1.2 Sobredimensionado del modelo

En la práctica, las medidas registradas contienen ruido de forma que la respuesta ante vibración
libre del sistema en el que se excitan N modos se expresa según la ecuación 3.21 [3].

x(t) =
2N∑
r=1

zre
λrt + n(t) (3.21)

En el caso de que la respuesta contenga más medidas que los grados de libertad que están siendo
excitados, ésta puede escribirse como sigue

x(t) =
2N∑
r=1

zre
λrt +

2M∑
r=2N+1

Rre
λrt (3.22)

siendo M el número de grados de libertad permitidos. Al proceder de esta manera, se ha compro-
bado experimentalmente que los resultados mejoran en gran medida, esto sucede debido a que
la información del ruido fuga hacia los M − N grados de libertad extra en vez de afectar a los
grados de libertad reales del sistema. Además, al construir un modelo con M grados de libertad
computacionales, desaparece la necesidad de conocer con exactitud el número de grados de libertad,
N , del sistema.

3.1.3 Generación de pseudoestaciones

Al explicar el fundamento teórico del método se ha supuesto que la cantidad de medidas disponibles
era igual al número de grados de libertad del sistema, sin embargo, lo más probable es que el número
de sensores, p, sea menor que el número de modos del sistema, N . La respuesta del sistema en este
caso podría definirse como un vector con p filas con la ecuación 3.23 [3].

x(t) =
2N∑
r=1

zre
λrt, N > p (3.23)

Para poder identificar los N modos de vibración sin tener que aumentar la cantidad de sensores
del ensayo, se crean “pseudoestaciones” o estaciones ficticias generadas a partir de las respuestas
medidas con los p sensores. Para ello, cada pseudoestación se retrasa un intervalo ∆t2 respecto a la
respuesta real captada.

x(t+∆t2) =

2N∑
r=1

zre
λr(t+∆t2) =

2N∑
r=1

zre
λr∆t2eλrt =

2N∑
r=1

z̄re
λrt (3.24)

Uniendo estas medidas ficticias y las originales, se tiene una respuesta con un total de 2pmedidas,
p medidas reales y p pseudomedidas.

[
x(t)

x(t+∆t2)

]
=

2N∑
r=1

[
zr
z̄r

]
eλrt (3.25)
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Este proceso puede repetirse incluyendo nuevas pseudoestaciones con sus respectivos desfases
temporales ∆t2,k, hasta conseguir que la respuesta tenga N medidas, p reales y k · p ficticias. El
resultado sería el siguiente: 

x(t)
x(t+∆t2,1)
x(t+∆t2,2)

...
x(t+∆t2,k)

 =
2N∑
r=1


zr
z̄r,1
z̄r,2

...
z̄r,k

 eλrt (3.26)

En esta memoria, en el vector ∆t2 se agruparán todos los desfases ∆t2,k seleccionados para
generar pseudoestaciones. Los valores de ∆t2 han de escogerse de tal forma que no sean ni muy
grandes ni muy pequeños, ya que, en el primer caso, se estarían incluyendo registros con más
ruido debido a que se trabaja con la respuesta ante vibración libre, y en el segundo, al haber poco
espaciado temporal entre estaciones, la matriz χχT podría ser singular, lo que impide resolver
el problema de autovalores con exactitud. Este hecho también ocurre cuando alguno de los ∆t2,k
coincide con ∆t1 y/o ∆t3.

3.2 Validación de resultados

Para identificar qué polos y modos estimados del ensayo describen el comportamiento dinámico de
la estructura se van a usar dos criterios: el “Modal Confidence Factor”, MCF, y el “Modal Assurance
Criterion”, MAC.

3.2.1 Modal Confidence Factor

Previamente, se ha explicado que al usar un modelo con M grados de libertad permitidos para
identificar N grados de libertad reales, siendo M mayor que N , se consiguen resultados más
precisos. Para diferenciar los N modos de la estructura de los M −N modos asociados al ruido,
se calcula el MCF [3, 6]. Este coeficiente de validación de resultados es exclusivo del método de
Ibrahim.

Si zir es el valor del desplazamiento modal r en el punto de medida i y z̄ir es el mismo pero
desfasado un tiempo ∆τ , de acuerdo con la teoría de vibraciones para sistemas lineales se espera
que el valor de z̄ir sea:

(z̄ir)expected = zire
λr∆τ (3.27)

el MCF compara este valor esperado con el desplazamiento modal r en el punto de medida i de la
pseudoestación k-ésima con ∆t2,k = ∆τ . Se define como:

(MCF )ir =


∣∣∣ z̄ir
zireλr∆τ

∣∣∣ , si z̄ir < (z̄ir)expected

∣∣∣ zireλr∆τ

z̄ir

∣∣∣ , si z̄ir ≥ (z̄ir)expected

(3.28)

su valor puede estar entre 0 y 1. Cuando el MCF es 1, significa que el autovector identificado se
corresponde con un modo de vibración estructural. En esta tesis se calcula un único MCFr para
cada modo r tomándose el del punto de medida cuyo MCF tenga el valor más pequeño de entre
todas las pseudoestaciones generadas. El MCF sólo puede aplicarse cuando se incluya al menos
una pseudoestación al ITD.
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3.2.2 Modal Assurance Criterion

Una de las herramientas más usadas para comparar los modos de vibración obtenidos mediante
diferentes métodos de estimación o datos de distintos ensayos es el MAC [2, 10]. Este factor es
un valor escalar entre 0 y 1 que da información acerca de la consistencia o linealidad entre los
vectores a comparar. En el caso general en el que se comparen los modos r y q, con parte compleja,
obtenidos de una forma A y otra B, el MAC se calcula como sigue:

MAC(r,q) =
∣∣{ψA}Tr {ψB}∗q

∣∣
({ψA}Tr {ψA}∗r)

(
{ψB}Tq {ψB}∗q

) (3.29)

siendo el valor del MAC cercano a 0 cuando no hay similitud entre los vectores, y próximo a 1
cuando existe correlación entre ellos. Los valores obtenidos se ensamblan en la matriz MAC, aunque
los resultados suelen representarse en gráficas 2D o 3D para que la información sea más visual y
ocupe menos espacio.

Los resultados de la matriz MAC deben interpretarse correctamente para no hacer un mal uso
de los mismos. Este coeficiente no está pensado como un criterio para asegurar la validez de los
resultados o hacer la comprobación de ortogonalidad de los modos de vibración con respecto a la
matriz de masa del sistema en primera instancia. Para poder hacerlo, antes es necesario saber las
razones por las que el MAC toma valores cercanos a 0 o 1.

Cuando el MAC es muy próximo a 0, puede deberse a:

• Cambios en las propiedades de masa, rigidez y amortiguamiento del sistema durante el ensayo,
es decir, el sistema no es estacionario.

• Comportamiento no lineal del sistema.
• Presencia de ruido en la forma modal de referencia.
• Estimación errónea de los parámetros modales.
• Los modos de vibración son linealmente independientes.

En el caso de que se puedan descartar los cuatro primeros motivos, el MAC puede interpretarse
como una comprobación de la ortogonalidad de las formas modales comparadas.

Por otra parte, si el MAC es cercano a 1, puede significar que:

• No se disponen de las suficientes estaciones reales para poder distinguir dos formas modales
independientes.

• Los modos estimados son causados por una excitación distinta a la deseada. Esto puede
suceder, por ejemplo, cuando en la estructura existen partes rotatorias desequilibradas durante
la medición.

• La relación lineal entre los modos es debida a que ambos presentan ruido.
• Los vectores modales comparados representan el mismo modo de vibración.

Cuando se pueda asegurar que los tres primeros motivos no han afectado en el valor del MAC,
éste sirve para validar que existe una relación en los modos de vibración obtenidos.



4 Aplicación ITD a modelo analítico

Para tener una primera toma de contacto con el método y comprobar el correcto funcionamiento
del código desarrollado, se va a analizar un modelo teórico de tres grados de libertad. Todo

este proceso va a realizarse en MATLAB® .

4.1 Sistema a estudiar

El modelo a estudiar está compuesto por tres conjuntos masa-muelle-amortiguador y viene repre-
sentado en la figura 4.1.

Figura 4.1 Esquema del modelo de tres grados de libertad [13].

Las propiedades del sistema indicadas en la figura 4.1 tienen los siguientes valores.

m1 = 1200 kg, m2 = m3 = 2400 kg;

k1 = k4 = 250000 N/m, k2 = k3 = 100000 N/m;

c1 = c2 = 2500 N/(m/s), c3 = c4 = 3500 N/(m/s).

Las matrices de masa, amortiguamiento y rigidez del sistema, en función de los parámetros del
mismo, son:

m =

m1 0 0

0 m2 0

0 0 m3

 ; k =

k1 + k2 −k2 0

−k2 k2 + k3 −k3
0 −k3 k3 + k4



c =

c1 + c2 −c2 0

−c2 c2 + c3 −c3
0 −c3 c3 + c4


(4.1)

17
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y al sustituir los términos quedan como:

m =

1200 0 0

0 2400 0

0 0 2400

 ; k =

 350 · 103 −100 · 103 0

−100 · 103 200 · 103 −100 · 103

0 −100 · 103 350 · 103



c =

 5000 −2500 0

−2500 3000 −3500

0 −3500 7000


(4.2)

particularizando las ecuaciones 2.2, 2.3 y 2.4 para estas matrices y resolviendo el problema de
autovalores y autovectores descrito por la ecuación 2.6, se obtienen los siguientes polos y modos:

λ1,2 = −0,5233∓ 7,118j; φ1,2 =

0,7821± 0,01718j
2,235± 0,2417j

1



λ3,4 = −1,850∓ 12,601j; φ3,4 =

−0,2468± 0,1095j
−0,411± 0,05963j

1

 (4.3)

λ5,6 = −2,418∓ 17,337j; φ5,6 =

13,468± 10,596j
−3,242∓ 1,277j

1


Estos valores teóricos se compararán más adelante con los estimados a partir del método de

Ibrahim en dos escenarios distintos, en uno la respuesta estará libre de perturbaciones y en el otro
se contaminará con ruido. Para obtener la respuesta del sistema ante vibración libre, en ambos casos
se va a usar la subrutina ode45 de MATLAB® para que integre numéricamente las ecuaciones de
movimiento del sistema para unas condiciones iniciales impuestas. Se va a registrar la respuesta
durante 4 s con una frecuencia de adquisición de datos de 1000 Hz, es decir, las medidas están
espaciadas 0,001 s. La subrutina ode45 se ha configurado con una tolerancia de 10−3 para el error
relativo y una de 10−6 para el error absoluto entre iteraciones.

4.2 Identificación de los parámetros modales sin ruido

La respuesta del sistema mostrado en la figura 4.1, para unas condiciones iniciales en posición de
x1(0) = 0,4 m, x2(0) = −0,3 m y x3(0) = −0,2 m, y nulas en velocidad y aceleración por partir
del reposo, se muestra en la figura 4.2.

Como se está estudiando un modelo analítico de tres grados de libertad sin ruido, por la teoría
explicada anteriormente en el apartado 3.1, se sabe que construyendo las matrices χ y χ̂ con un
tamaño 6×6 cada una, pueden obtenerse los polos y los modos del sistema. Para ello, los parámetros
del método de Ibrahim elegidos se resumen en la tabla 4.1.

Bajo estas condiciones, el intervalo de respuesta usado va desde los 0,04 s hasta los 0,66 s. A
continuación, en la figura 4.3 se incluye una gráfica ampliada de la respuesta ante vibración libre,
donde se encuentran marcados los registros que componen las matrices χ y χ̂ para visualizar cómo
se seleccionan los puntos de la señal.
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Figura 4.2 Respuesta teórica ante vibración libre del sistema.

Tabla 4.1 Parámetros seleccionados del ITD para la respuesta teórica.

Parámetro Símbolo Valor
Número de estaciones reales p 3
Desfases temporales de las

pseudoestaciones ∆t2 [∼]

Instante del primer registro t0 0,04 s
Número de columnas de χ y χ̂ ncol 6

Espaciado entre registros h 0,08 s
Desfase entreX y X̄ ∆t3 0,11 s
Desfase entre χ y χ̂ ∆t1 0,11 s

Instante del último registro tf 0,66 s
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X 0.12

Y -0.188558

X 0.34

Y 0.225583

X 0.04

Y 0.297656

X 0.15

Y -0.31095

X 0.23

Y -0.231877

X 0.26

Y -0.093191

Figura 4.3 Registros seleccionados de la respuesta ante vibración libre.
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Los puntos marcados con un círculo conforman la matriz X y los marcados con un asterisco
ˆ̄X . Si se observa la figura 4.3, hay dos marcadores que siempre se solapan, el cuadrado y la cruz.
Esto se debe a que, al tener los parámetros ∆t1 y ∆t3 el mismo valor, las medidas seleccionadas
para construir las matrices X̄ y X̂ coinciden, y en consecuencia, dichas matrices son exactamente
iguales. La elección de ∆t3 = ∆t1 se va a hacer en todos los análisis del método de Ibrahim en
esta memoria para simplificar la aplicación del mismo, aunque el código desarrollado permite
diferenciar entre ambos parámetros si así se desea.

Al aplicar el procedimiento del ITD a la respuesta sin ruido con los parámetros definidos en la
tabla 4.1 se obtienen los siguientes modos y polos del sistema.

λ1,2 = −0,5238∓ 7,118j; φ1,2 =

0,7811± 0,01451j
2,235± 0,2423j

1



λ3,4 = −1,847∓ 12,599j; φ3,4 =

−0,2594± 0,1067j
−0,409± 0,05893j

1

 (4.4)

λ5,6 = −2,4118∓ 17,340j; φ5,6 =

13,469± 10,623j
−3,243∓ 1,282j

1


A simple vista, si se comparan estos resultados con los obtenidos teóricamente, cuyos valores

aparecen en la expresión 4.3, se puede comprobar que la estimación de los parámetros modales ha
sido muy exacta. No obstante, como ya se ha comentado, la presencia de ruido durante la captación
de los datos hace imposible obtener registros como los de la figura 4.2. Por ello, se ha de estudiar
cómo se comporta el método frente a estas perturbaciones.

4.3 Identificación de los parámetros modales con ruido

Para generar un ruido aleatorio se han usado las funciones randn y rng de MATLAB® . La primera de
ellas permite generar una matriz de números aleatorios que sigue una distribución normal estándar,
y la segunda controla cómo la función randn genera dicha secuencia de números aleatorios. Al
configurar la función rng con la opción ‘default’, se consigue contaminar la respuesta del sistema
usando siempre el mismo ruido aleatorio para así poder comparar realmente los resultados de aplicar
el ITD variando los parámetros elegidos por el operador.

La respuesta con ruido se ha obtenido sumando para cada instante la respuesta analítica de la
figura 4.2 y la secuencia de números aleatorios generada por la función randn. El ruido incluido
tiene una media de 0 mm y una desviación típica de 3,3̄ mm, de forma que su amplitud sea 10 mm
como máximo en el 99,7 % de los casos. La respuesta “experimental” calculada se muestra en la
figura 4.4.
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Figura 4.4 Respuesta ante vibración libre del sistema contaminada con un ruido aleatorio de amplitud
máxima de 10 mm.

Si se aplica el ITD a la respuesta con ruido con los mismos parámetros de la tabla 4.1, los
parámetros modales que se obtienen son:

λ1,2 = −0,5824∓ 7,5025j; φ1,2 =

0,7814± 0,07922j
1,9519± 3,2773j

1



λ5,6 = −2,651∓ 17,171j; φ5,6 =

 0,5144± 6,6466j
−0,6996∓ 1,0804

1

 (4.5)

el segundo par de polos y modos conjugados estimado no se muestra en la expresión 4.5 ya que el
método ni siquiera lo ha identificado correctamente.

Es evidente que la estimación no ha tenido éxito debido al ruido añadido. Por tanto, es necesario
cambiar los parámetros del ITD para obtener unos resultados más exactos. Para ello, se va a hacer
un estudio sobre cómo varían las frecuencias naturales identificadas al cambiar los parámetros que
intervienen en el método de Ibrahim, aplicando las modificaciones explicadas en los apartados
3.1.1, 3.1.2 y 3.1.3.

En todos los análisis hechos, el instante del primer registro usado ha sido 0,04 s, se ha establecido
un MCF de corte de 0,9, cuando pueda usarse, y se han usado los registros en posición de las tres
masas puntuales con ruido, es decir, un total de tres medidas reales. En cada análisis realizado sólo
se ha variado uno de los parámetros del método, manteniendo el resto constante, para observar
cómo influye su valor en la estimación.

En primer lugar, se va a estudiar la influencia del número de columnas de las matrices χ y χ̂,
ncol. Al aumentar este parámetro, los efectos del ruido en la estimación deben disminuir según lo
visto en el apartado 3.1.1. Al aplicar el ITD fijando los parámetros según los valores de la tabla 4.2
y variando ncol desde 6 hasta 1600, se obtiene la figura 4.5.

Observando la gráfica se puede comprobar que cuando se usan pocos registros, las estimaciones
de las frecuencias naturales se alejan mucho de los valores teóricos. Sin embargo, a medida que el
número de columnas de χ y χ̂ se incrementa, el método converge hacia las frecuencias naturales
teóricas. En este caso, para un ncol superior a 250, las frecuencias calculadas se estabilizan en
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Tabla 4.2 Parámetros seleccionados del ITD para el análisis de la respuesta con ruido variando
ncol.

Parámetro Símbolo Valor
Desfases temporales de las

pseudoestaciones ∆t2 [∼]

Número de columnas de χ y χ̂ ncol 6 ÷ 1600
Espaciado entre registros h 0,002 s

Desfase entreX y X̄ ∆t3 0,11 s
Desfase entre χ y χ̂ ∆t1 0,11 s

Instante del último registro tf 0,27 s ÷ 3,458 s

Figura 4.5 Frecuencias naturales estimadas al variar ncol.

torno al valor correcto. Otra información que puede extraerse de la figura 4.5 es que si se toman
registros muy alejados respecto al inicio de la vibración libre, la estimación empeora. Este efecto
se visualiza mejor al representar el error relativo en porcentaje entre los valores calculados y los
teóricos frente a ncol, como se muestra en la figura 4.6.

Se puede ver que a partir de un cierto valor, en este caso ncol ∼800, el error en las estimaciones
de todas las frecuencias naturales aumenta, alejándose el valor estimado del teórico. Por tanto,
se concluye que ncol debe tener un valor mucho mayor que 2N , pero teniendo en cuenta que el
intervalo de respuesta usado sea próximo al inicio de la vibración libre. Un valor de referencia en
este ejemplo puede ser ncol ∼ 500.

En el segundo barrido se va a analizar la influencia de ∆t1 variando su valor desde 0,001 s hasta
0,6 s en intervalos de 0,001 s. Los valores elegidos para el resto de parámetros se detallan en la
tabla 4.3, y el resultado en la figura 4.7.
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Figura 4.6 Error relativo de las frecuencias naturales estimadas con respecto a las teóricas al variar
ncol.

Tabla 4.3 Parámetros seleccionados del ITD para el análisis de la respuesta con ruido variando
∆t1.

Parámetro Símbolo Valor
Desfases temporales de las

pseudoestaciones ∆t2 [∼]

Número de columnas de χ y χ̂ ncol 420
Espaciado entre registros h 0,002 s

Desfase entreX y X̄ ∆t3 0,001 s ÷ 0,6 s
Desfase entre χ y χ̂ ∆t1 0,001 s ÷ 0,6 s

Instante del último registro tf 0,88 s ÷ 2,078 s

Figura 4.7 Frecuencias naturales estimadas al variar ∆t1 y ∆t3.
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Para valores inferiores a 0,05 s, no todas las frecuencias naturales estimadas se aproximan a las
teóricas, sobre todo en el caso de la segunda frecuencia natural. En el entorno entre los 0,1 s y los
0,16 s, se estabilizan los resultados, dando estimaciones buenas. A partir de los 0,17 s, la tercera
frecuencia natural estimada crece un poco y luego disminuye rápidamente, distanciándose del valor
teórico. Este hecho ocurre de forma similar tanto para la segunda como para la primera frecuencia
natural alrededor de los 0,22 s y los 0,43 s, respectivamente.

El efecto descrito se debe a la condición regida por la ecuación 3.19 que afectaba a ∆t1. Cal-
culando los ∆t1 máximos para cada frecuencia natural teórica usando esa ecuación, se tiene que
no deben superar los 0,44, 0,25 y 0,18 s para conseguir estimar la primera, segunda y tercera fre-
cuencia, respectivamente. Aproximadamente, estos valores teóricos coinciden con los identificados
visualmente en la figura 4.7. Para seleccionar un valor adecuado de ∆t1 se va a representar en la
figura 4.8 una gráfica con el error relativo entre frecuencias estimadas y teóricas en la zona de
interés.

Figura 4.8 Error relativo de las frecuencias naturales estimadas con respecto a las teóricas al variar
∆t1 y ∆t3.

Observando la gráfica anterior puede comprobarse que los valores óptimos de ∆t1 oscilan entre
0,11 s y 0,16 s, ya que los errores son menores al 1 % para todas las frecuencias naturales. Para
futuros análisis se tomará un ∆t1 próximo a los 0,135 s. La conclusión más importante de estos
barridos es que ∆t1 ha de ser algo inferior a 1

2fmax
, siendo fmax la máxima frecuencia natural que

se desea abarcar con el método, ya que de lo contrario será imposible identificarla.

Ahora, se pasa a determinar el efecto que tiene el espaciado temporal entre los registros usados,
h, en el rango de 0,001 s hasta 0,007 s en intervalos de 0,001 s. En este análisis hay un rango de
valores más pequeño porque cuanto más grande sea h, se tiene que disminuir ncol o tomar registros
más alejados del instante inicial, lo que se ha comprobado que empeora los resultados obtenidos.
Los valores tomados para el resto de parámetros se detallan en la tabla 4.4, y los resultados en la
figura 4.9.

En este caso, salvo para h =0,001 donde el error de la segunda frecuencia natural es mayor al
10 %, el error de las estimaciones es inferior al 0,7 % para el resto de valores de h, por lo que
parece no influir en gran medida en el método. Por tanto, para poder aumentar el parámetro ncol lo
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Tabla 4.4 Parámetros seleccionados del ITD para el análisis de la respuesta con ruido variando h.

Parámetro Símbolo Valor
Desfases temporales de las

pseudoestaciones ∆t2 [∼]

Número de columnas de χ y χ̂ ncol 420
Espaciado entre registros h 0,001 s ÷ 0,007 s

Desfase entreX y X̄ ∆t3 0,138 s
Desfase entre χ y χ̂ ∆t1 0,138 s

Instante del último registro tf 0,735 s ÷ 3,249 s
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Figura 4.9 Error relativo de las frecuencias naturales estimadas con respecto a las teóricas al variar
h.

máximo posible para atenuar el efecto del ruido, el valor de h se elegirá en torno a dos veces la
resolución del sistema de adquisición de datos, para este ejemplo 0,002 s.

Por último, se va a estudiar la influencia de la cantidad de pseudoestaciones y el valor de
sus desfases temporales. Para ello, se irá variando el valor ∆t2,k de la pseudoestación k-ésima,
manteniendo constantes el del resto de pseudoestaciones que se definan. Primero, se va a usar
sólo una pseudoestación cuyo ∆t2,1 varía entre 0,01 s y 0,5 s en intervalos de 0,001 s. El resto de
parámetros se reflejan en la tabla 4.5 y en la figura 4.10 se representa el valor estimado para cada
frecuencia natural frente a ∆t2,1.

Se puede ver que hay dos zonas, entre 0,17 s y 0,25 s y a partir de los 0,42 s hasta 0,5 s, donde
las frecuencias estimadas asociadas al segundo par de polos del sistema fugan hacia el valor de la
tercera frecuencia natural teórica. Esto ocurre porque al introducir pseudomedidas el criterio del
MCF es aplicable, descartando así los polos y modos calculados por el ITD que no superan el valor
del MCFcorte. Para el resto de casos, no se aprecian diferencias a simple vista entre el valor de las
frecuencias estimadas.

Para hacer un estudio más profundo, van a representarse los errores relativos para aquellos valores
de ∆t2,1 que estiman los tres polos del sistema y sus conjugados correctamente, según el criterio
del MCF. En la figura 4.11 se muestran los resultados.

Se puede ver que en todos los casos que cumplen la restricción anterior, los errores son inferiores
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Tabla 4.5 Parámetros seleccionados del ITD para el análisis de la respuesta con ruido variando
∆t2,1 usando una pseudoestación.

Parámetro Símbolo Valor
Desfases temporales de las

pseudoestaciones ∆t2 [ 0,001 s ÷ 0,5 s ]

Número de medidas ficticias k · p 3
Número de columnas de χ y χ̂ ncol 420

Espaciado entre registros h 0,002 s
Desfase entreX y X̄ ∆t3 0,138 s
Desfase entre χ y χ̂ ∆t1 0,138 s

Instante del último registro tf 1,164 s ÷ 1,654 s
MCF de corte MCFcorte 0,9

Figura 4.10 Frecuencias naturales estimadas al variar ∆t2,1 usando una pseudoestación.

Figura 4.11 Error relativo en tanto por ciento de las frecuencias naturales estimadas con respecto a
las teóricas al variar ∆t2,1 usando una pseudoestación.
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al 0,6 % para las tres frecuencias naturales estimadas. Por tanto, es cierto que la inclusión de
pseudomedidas junto con el uso del MCF mejora la estimación de los parámetros modales. Para
seguir estudiando este efecto, se va a realizar el mismo barrido de ∆t2,1 incluyendo 2, 3 y hasta 4
pseudoestaciones, siendo ∆t2,2 = 0,017 s, ∆t2,3 = 0,029 s y ∆t2,4 = 0,041 s. Los resultados para
estos tres análisis se muestran en las figuras 4.12, 4.13 y 4.14 respectivamente.

Figura 4.12 Error relativo en tanto por ciento de las frecuencias naturales estimadas con respecto a
las teóricas al variar ∆t2,1 usando dos pseudoestaciones.

Figura 4.13 Error relativo en tanto por ciento de las frecuencias naturales estimadas con respecto a
las teóricas al variar ∆t2,1 usando tres pseudoestaciones.

Teniendo en cuenta las tres gráficas se observa que, conforme aumenta el número de pseudoesta-
ciones, los errores cometidos en la estimación de la segunda frecuencia natural, que son los más
altos, se estabilizan en torno a una banda de error, de entre el 0,4 % y el 0,1 % en el caso de usar
cuatro pseudoestaciones. Para la primera y la tercera frecuencia natural los errores son inferiores al
0,1 %. Otro hecho a destacar es que al crear más pseudoestaciones hay menos puntos dibujados, es
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Figura 4.14 Error relativo en tanto por ciento de las frecuencias naturales estimadas con respecto a
las teóricas al variar ∆t2,1 usando cuatro pseudoestaciones.

decir, el criterio del MCF elimina ciertos valores de ∆t2,1 que no consiguen estimar todos los polos
del sistema. Este efecto se aprecia claramente en la figura 4.14 para la región entre 0,2 s y 0,23 s.

Por tanto, se ha decidido que los desfases temporales de las pseudoestaciones sean pequeños para
así evitar cruzar por estas zonas e incluir registros con menor proporción de ruido. De forma general
∆t2 se construirá como un vector de números primos multiplicado por la resolución del sistema
de adquisición de datos, en este caso 0,001 s. Para este ejemplo, ∆t2 = 0,001 s ·[17 29 41 53]
cuando haya un total de cuatro pseudoestaciones.

4.4 Análisis de los resultados

En este apartado, se comparan los parámetros modales obtenidos en presencia de ruido con los
resultados teóricos, para cinco casos distintos. Para ello, se calcula el error relativo entre los polos y
modos estimados con los teóricos de la siguiente forma:

ελ =

∣∣∣∣ |λteo| − |λest|
|λteo|

∣∣∣∣ ; εφ =

∣∣∣∣ ||φteo|| − ||φest||
||φteo||

∣∣∣∣ (4.6)

También, se detallan los valores del MCF y del MAC para cada caso estudiado. Los parámetros
del ITD seleccionados se recogen en la tabla 4.6. Los resultados obtenidos para los 5 casos se
detallan en las tablas 4.7 y 4.8 y en las figuras 4.15, 4.16, 4.17, 4.18 y 4.19.

Observando los valores recogidos en la tabla 4.7 se comprueba que para todos los análisis realiza-
dos la estimación de los polos puede considerarse correcta, aunque al introducir las pseudoestaciones
parece mejorar. Los valores del MCF también son superiores a 0,95 en todos los casos a los que
puede aplicarse, por lo que se puede afirmar que los modos calculados se corresponden con modos
de vibración estructural. Es destacable que, a medida que se generan más pseudoestaciones, el MCF
disminuye.

Respecto a los errores relativos recogidos en la tabla 4.8, en el caso de los polos siempre son
inferiores al 0,5 %, por lo que el método consigue resultados muy satisfactorios. En cuanto a los
modos de vibración, el primero y el segundo se calculan con errores inferiores al 0,7 % para cualquier
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Tabla 4.6 Parámetros seleccionados del ITD para el análisis de la respuesta con ruido variando la
cantidad de pseudoestaciones.

Parámetro Símbolo Valor
Número de medidas reales p 3
Desfases temporales de las

pseudoestaciones ∆t2 [0,017 0,029 0,041 0,053] s

Número de medidas ficticias k · p [0 3 6 9 12]
Instante del primer registro t0 0,04 s

Número de columnas de χ y χ̂ ncol 420
Espaciado entre registros h 0,002 s

Desfase entreX y X̄ ∆t3 0,138 s
Desfase entre χ y χ̂ ∆t1 0,138 s

Instante del último registro tf 1,154 s ÷ 1,207 s
MCF de corte MCFcorte 0,9

Tabla 4.7 Pares de polos y MCF obtenidos para la respuesta con ruido variando la cantidad de
pseudoestaciones.

Par de polos y MCF

Análisis Modo 1 Modo 2 Modo 3

Teórico −0,5233∓ 7,118j

∼

−1,850∓ 12,601j

∼

−2,418∓ 17,337j

∼

Sin pseudo-
estaciones

−0,5422∓ 7,1144j

1

−1,8957∓ 12,6223j

1

−2,4301∓ 17,3042j

1

1 pseudoesta-
ción

−0,5348∓ 7,119j

0,9887

−1,8497∓ 12,632j

0,9816

−2,439∓ 17,3254j

0,9889

2 pseudoesta-
ciones

−0,533∓ 7,120j

0,9885

−1,8444∓ 12,6385j

0,9758

−2,4381∓ 17,3315j

0,990

3 pseudoesta-
ciones

−0,536∓ 7,1206j

0,9878

−1,838∓ 12,640j

0,9716

−2,431∓ 17,3336j

0,9813

4 pseudoesta-
ciones

−0,5365∓ 7,1191j

0,9857

−1,8368∓ 12,6491j

0,9687

−2,4234∓ 17,3393j

0,961

análisis, sin embargo, el tercero empeora su estimación a medida que se incluyen pseudoestaciones
hasta un error del 5,5 % aproximadamente.

En cuanto a las matrices MAC, se han calculado comparando los modos teóricos con los obtenidos
al aplicar el ITD. Los resultados se muestran en las figuras 4.15, 4.16, 4.17, 4.18 y 4.19. Se observa
que los valores son muy próximos a 1 en los términos de la diagonal principal y cercanos a 0 en el
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Tabla 4.8 Errores relativos de los polos y modos estimados variando la cantidad de pseudoestaciones.

Error relativo (%) de los polos y modos estimados para cada análisis

Análisis Modo 1 Modo 2 Modo 3

Sin pseudo-
estaciones 0,0306 0,6169 0,2199 0,0304 0,1771 0,2932

1 pseudoesta-
ción 0,0258 0,5817 0,2426 0,2690 0,0499 3,0085

2 pseudoesta-
ciones 0,0383 0,5558 0,2867 0,2341 0,0161 3,6574

3 pseudoesta-
ciones 0,0503 0,5088 0,2911 0,2849 0,0101 4,6465

4 pseudoesta-
ciones 0,0300 0,5031 0,3608 0,2798 0,0160 5,4467

resto, para todos los análisis. Por tanto, se puede afirmar que los modos estimados se corresponden
con los teóricos. Cabe destacar que, conforme aumenta el número de pseudoestaciones, el valor de
los términos MAC2,3 y MAC3,2 se eleva. Esto quiere decir que la independencia lineal de los modos
va decreciendo.

Figura 4.15 Representación 2-D y numérica del MAC sin pseudoestación.

Figura 4.16 Representación 2D y numérica del MAC con 1 pseudoestación.
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Figura 4.17 Representación 2D y numérica del MAC con 2 pseudoestaciones.

Figura 4.18 Representación 2D y numérica del MAC con 3 pseudoestaciones.

Figura 4.19 Representación 2D y numérica del MAC con 4 pseudoestaciones.

La información más importante a extraer de este apartado es que, a medida que se incrementa
la cantidad de pseudoestaciones, las estimaciones de los polos y los modos del sistema analizado
mejoran en general. No obstante, es necesario controlar cuántas se introducen porque, si se crean un
gran número de pseudoestaciones, puede empeorar la estimación realizada. Para ello, los criterios
del MCF y el MAC sirven como orientación.





5 Análisis modal teórico a viga en
voladizo

En este capítulo van a obtenerse de forma analítica las frecuencias naturales y los modos de
vibración de una viga en voladizo a partir de la teoría de vigas de Euler-Bernoulli, para tener

una referencia de los resultados a obtener de los datos experimentales y normalizar los modos
estimados con respecto a los teóricos.

5.1 Modelo de viga según la teoría de Euler-Bernoulli

Este modelo permite describir las vibraciones transversales de una viga bajo las siguientes hipótesis:

• El material tiene un comportamiento elástico-lineal, descrito por la ley de Hooke.
• Las vibraciones se producen en un plano principal de inercia.
• No se consideran las deformaciones debidas al cortante.
• Las inercias de giro de las secciones son despreciables.
• Hay pequeñas deformaciones y pequeños desplazamientos.

Para hallar la ecuación de movimiento del sistema, se plantean las condiciones de equilibrio para
una sección infinitesimal de la viga situada a una distancia η del extremo izquierdo y de longitud
dη. Dicha rebanada está sometida a esfuerzos cortantes y momentos en ambas caras. En la figura
5.1 se muestra un esquema de la viga sometida a vibración libre y en la 5.2 la rebanada.

Figura 5.1 Esquema de la viga elemental [13].

33
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Figura 5.2 Rebanada sometida a cortantes y momentos [13].

De plantear el equilibrio de fuerzas en dirección transversal, despreciando los infinitésimos de
orden superior, se obtiene:

V +
∂V

∂η
dη − V − m̄(η)

∂2y

∂t2
dη = 0 (5.1)

y del equilibrio de momentos, también despreciando los infinitésimos de orden superior:

M + V dη −M − ∂M

∂η
dη = 0 (5.2)

operando las ecuaciones 5.1 y 5.2 se llega a:

∂V

∂η
− m̄(η)

∂2y

∂t2
= 0 (5.3)

V − ∂M

∂η
= 0 (5.4)

derivando la ecuación 5.4 respecto a η y sustituyendo la expresión en la ecuación 5.3, se obtiene lo
siguiente:

∂2M

∂η2
− m̄(η)

∂2y

∂t2
= 0 (5.5)

para quitar el momento de la expresión anterior, se usa la ecuación 5.6 que relaciona las variables y
y M a través de la ley de comportamiento:

∂2y

∂η2
= −M(η)

EI(η)
(5.6)

al sustituir esta expresión en la ecuación 5.5 se llega a:

∂2

∂η2

(
EI(η)

∂2y

∂η2

)
+ m̄(η)

∂2y

∂t2
= 0 (5.7)

y si se asume que los términosEI(η) y m̄(η) son constantes a lo largo de la viga, puede simplificarse
llegando a la ecuación 5.8.

EI
∂4y

∂η4
+ m̄

∂2y

∂t2
= 0 (5.8)

Las condiciones iniciales del problema son y(η,0) = y0(η) y ẏ(η,0) = ẏ0(η). Además, hará
falta establecer cuatro condiciones de contorno, ya que se tienen derivadas de cuarto orden con
respecto a η. Para resolver la ecuación 5.8 se usa la técnica de separación de variables, asumiendo
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una solución del tipo y(η,t) = ϕ(η)y(t). Sustituyendo esta expresión en 5.8 se obtiene:

EIϕIV (η)y(t) + m̄ϕ(η)ÿ(t) = 0 (5.9)

y agrupando a un lado y otro de la igualdad los términos dependientes de η y t, respectivamente:

ϕIV (η)

ϕ(η)
= − m̄

EI

ÿ(t)

y(t)
= λ4 (5.10)

donde se ha introducido la constante λ ya que la única forma de que una función dependiente de η y
otra dependiente de t sean iguales es que ambas sean constantes. De la expresión 5.10 se obtienen
dos ecuaciones diferenciales ordinarias. La primera es:

ÿ(t) +
EI

m̄
λ4y(t) = 0 (5.11)

cuya solución tiene la forma
y(t) = C cos (ωt− φ) (5.12)

siendo C y φ constantes de integración que dependen de las condiciones iniciales del problema, y
ω definiéndose según la expresión de la izquierda de la ecuación 5.13.

ω2 = λ4
EI

m̄
→ λ4 =

ω2m̄

EI
(5.13)

La segunda ecuación diferencial es

ϕIV (η)− λ4ϕ(η) = 0 (5.14)

que admite soluciones tales como
ϕ(η) = Derη (5.15)

que al sustituir en 5.14 se llega a la ecuación 5.16.

(r4 − λ4)Derη = 0 (5.16)

Para obtener soluciones distintas a la trivial, debe cumplirse que r4 = λ4, por lo que existen
cuatro soluciones de r:

r1 = λ, r2 = −λ, r3 = jλ, r4 = −jλ (5.17)

siendo la solución general de la ecuación 5.14

ϕ(η) = D1e
λη +D2e

−λη +D3e
jλη +D4e

−jλη (5.18)

que haciendo uso de las relaciones e±jx = cosx ± j senx y e±x = coshx ± senhx pueden
reescribirse como

ϕ(η) = B1 sen (λη) +B2 cos (λη) +B3 senh (λη) +B4 cosh (λη) (5.19)

dondeB1,B2,B3 yB4 son constantes de integración que se obtienen de las condiciones de contorno
de la viga.

A partir de aquí se particulariza para el caso de una viga en voladizo, donde uno de sus extremos
está empotrado y el otro libre, como se muestra en la figura 5.3.
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Figura 5.3 Esquema de la viga en voladizo [13].

Las condiciones de contorno para esta situación son:

ϕ(0) = 0, ϕ′(0) = 0, M(L) = 0 → (ϕ′′(L) = 0), V (L) = 0 → (ϕ′′′(L) = 0) (5.20)

calculando la primera, segunda y tercera derivada de la expresión 5.19 con respecto a η y particula-
rizando para las condiciones de contorno anteriores, se llega al siguiente sistema de ecuaciones:

B2 +B4 = 0
λ(B1 +B3) = 0

−λ2 (B1 sen (λL) +B2 cos (λL)−B3 senh (λL)−B4 cosh (λL)) = 0
λ3 (−B1 cos (λη) +B2 sen (λη) +B3 cosh (λη) +B4 senh (λη)) = 0

(5.21)

al despejar B4 y B3 de la primera y segunda ecuación respectivamente y sustituir en las dos últimas
se llega a un nuevo sistema de ecuaciones que, escrito de forma matricial, queda como[

sen (λL) + senh (λL) cos (λL) + cosh (λL)
− cos (λL)− cosh (λL) sen (λL)− senh (λL)

] [
B1

B2

]
=

[
0
0

]
(5.22)

para que el sistema tenga infinitas soluciones se fuerza a que el determinante de la primera matriz
sea 0. Haciendo uso de relaciones matemáticas, el sistema de ecuaciones puede reescribirse como:

cos (λL) · cosh (λL) + 1 = 0

κ = −B1
B2

= cos (λL)+cosh (λL)
sen (λL)+senh (λL)

(5.23)

de la primera ecuación del sistema 5.23 se obtiene el valor λn y de la segunda el valor de κn para
n = 1,2,3,... . Con esta información ya pueden expresarse los n modos de vibración de la viga en
voladizo según la expresión 5.24.

ϕn(η) = cosh (λnη)− cos (λnη)− κn (senh (λnη)− sen (λnη)) (5.24)

La frecuencia natural de cada modo de vibración, reformulando la ecuación 5.13, puede obtenerse
como:

ωn = (λnL)
2

√
EI

m̄L4
, m̄ = ρWH, I =

1

12
WH3 (5.25)

siendo λnL la solución n-ésima de la primera ecuación del sistema 5.23. En la figura 5.4, se muestra
una gráfica con los 4 primeros puntos de corte de la función f(x) = cos (x) · cosh (x) + 1 con el
eje X.
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Figura 5.4 Gráfica de f(x) y soluciones.

Con toda esta información, ya puede expresarse la respuesta frente a vibración libre de la viga en
voladizo como:

y(η, t) =
∞∑
n=1

ϕn(η)yn(t) =
∞∑
n=1

ϕn(η)Cn cos (ωnt− φn) (5.26)

5.2 Aplicación al sistema a estudiar

La estructura se trata de una viga de acero con sección rectangular. Está colocada de forma que
uno de sus extremos tiene impedidos todos los desplazamientos y giros, mientras que el otro está
totalmente libre. A continuación, en la tabla 5.1 se detallan sus propiedades.

Tabla 5.1 Medidas y propiedades materiales de la viga.

Dato Símbolo Valor
Longitud L 0,8 m
Espesor W 0,03 m
Canto H 0,01 m

Módulo de Young E 210 GPa
Densidad ρ 7850 kg/m3

Para calcular las frecuencias naturales de nuestra viga, particularizamos la ecuación 5.25 para los
parámetros de la tabla 5.1 y se calculan numéricamente los valores de λn y κn. A continuación,
se muestra en la tabla 5.2 las soluciones numéricas y las frecuencias naturales para los 6 primeros
modos de vibración. En la figura 5.5 se representan estos modos con una amplitud de desplazamiento
transversal en el extremo libre de 0,4 m.
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Tabla 5.2 Constantes para el cálculo de los 6 primeros modos de la viga en voladizo y frecuencia
naturales del sistema estudiado.

Modo n λnL κn ωn (Hz)
1 1,87510407 0.734095513 13,055
2 4,69409113 1.018467318 81,814
3 7,85475744 0.999224496 229,081
4 10,99540735 1.000033553 448,908
5 14,13716839 0.999998550 742,077
6 17,27875953 1.000000062 1108,535

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Figura 5.5 Deformada de la viga para los primeros 6 modos de vibración.



6 Estimación de parámetros modales a
viga en voladizo

En este capítulo se van a aplicar los conocimientos adquiridos en el capítulo 4 sobre el funcio-
namiento del ITD junto con la información del modelo teórico de la viga del capítulo 5 para

obtener los parámetros modales de una viga real ensayada en el laboratorio. Además, para tener
una primera aproximación de las frecuencias naturales del sistema y factores de amortiguamiento
del sistema, se usará el método del peak picking explicado en el capítulo 2. Toda la información
relativa a la estructura ensayada, el montaje experimental y los datos captados ha sido recopilada
del trabajo realizado en [12].

6.1 Sistema a estudiar y configuración del ensayo experimental

La estructura analizada se trata de una viga de acero con uno de sus extremos empotrado con dos
bloques metálicos y el otro extremo libre. Las propiedades de la viga vienen detalladas en la tabla
5.1. Para realizar los ensayos se usaron 32 puntos de medida para captar la respuesta dinámica del
sistema, experimentando con dos configuraciones distintas con 16 acelerómetros, piezoeléctricos
con una sensibilidad nominal de 100 mV/g y una masa de 4 g, en cada una de ellas. Se colocaron
los puntos de medida a una distancia de 25 mm entre cada uno de ellos, estando el punto de medida
1 a 10 mm del extremo fijo, y el punto de medida 32 a 10 mm del extremo libre.

En la configuración I, los acelerómetros se ubicaron en las posiciones impares, y en la confi-
guración II, en las pares, estando fijados a la viga mediante tornillos roscados. Haciendo esto, la
distribución de la masa era distinta según la configuración ensayada. Para solucionarlo, se optó por
colocar tornillos de la misma masa en las posiciones donde no hubiera acelerómetros para que la
distribución de masas siempre fuera la misma. En la figura 6.1 se representa un esquema con las
dos configuraciones.

En cuanto a la fuerza de excitación, era aplicada en el extremo libre de la viga con un martillo
de impacto y se realizaron cinco pruebas distintas para cada configuración, aunque los datos de la
fuerza registrados no se van a usar para estimar los parámetros modales en esta memoria. En la
figura 6.2 se muestran fotografías del montaje en el laboratorio.

6.2 Datos obtenidos

Como se ha comentado en la sección anterior, se realizaron cinco ensayos para cada una de las dos
configuraciones definidas, habiendo en total diez conjuntos de datos de experimentos distintos. La

39
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Figura 6.1 Esquema de las configuraciones I y II, y ubicación del punto de medida 1 y 32 [12].

(a)

(b) (c)

Figura 6.2 Ensayo experimental a viga en voladizo: (a) montaje; (b) sensores y tornillos; (c) martillo
de impacto [12].

frecuencia de adquisición era de 4096 Hz y se tomaron un total de 20480 registros por canal. Esto
es, durante 5 segundos se registró información en 17 canales, los 16 acelerómetros y el registro del
martillo de impacto. A continuación, para visualizar el tipo de respuesta en aceleración de la viga
frente al impacto del martillo se representan en las figuras 6.3, 6.4, 6.5, 6.6 y 6.7 los datos captados
en cada uno de los canales para la tercera prueba de la configuración II.
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Figura 6.3 Datos registrados en los acelerómetros 1, 2, 3 y 4.
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Figura 6.4 Datos registrados en los acelerómetros 5, 6, 7 y 8.

Al observar las gráficas, hay varios detalles que pueden apreciarse. En primer lugar, en la figura
6.3 se ve que las aceleraciones captadas en el punto de medida 2 tienen menor amplitud que el
resto de los sensores. Ocurre lo contrario para los registros del punto de medida 32 en la figura 6.6,
donde las aceleraciones tienen mayor amplitud y tardan más tiempo en atenuarse. Estos hechos son
lógicos, ya que el primer sensor es el más cercano al extremo empotrado y el último, el más cercano
al extremo libre, para la configuración II.

Respecto a la figura 6.7, se comprueba que el registro en aceleración poco después del impacto
tiene la forma típica de una vibración libre. En la gráfica situada a la izquierda puede verse que se
cumple que la fuerza aplicada al sistema es de tipo impulsivo, por lo que el método de Ibrahim
puede usarse tomando registros de la respuesta en aceleración en los que el efecto del impacto se
haya disipado.
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Figura 6.5 Datos registrados en los acelerómetros 9, 10, 11 y 12.

0 1 2 3 4 5

-60

-40

-20

0

20

40

60

0 1 2 3 4 5

-60

-40

-20

0

20

40

60

0 1 2 3 4 5

-60

-40

-20

0

20

40

60

0 1 2 3 4 5

-60

-40

-20

0

20

40

60

Figura 6.6 Datos registrados en los acelerómetros 13, 14, 15 y 16.
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Figura 6.7 Datos ampliados del acelerómetro 16 y del martillo de impacto durante la aplicación de
la fuerza.
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6.3 Estimación y validación de los parámetros modales

6.3.1 Peak picking y mode picking

Para realizar una primera aproximación de las frecuencias naturales, factores de amortiguamiento y
modos de la viga ensayada, van a usarse el peak picking y el mode picking. Al ser métodos que
sólo permiten una entrada, va a aplicarse directamente sobre los registros del acelerómetro 16, es
decir, los puntos de medida 31 y 32 para la configuración I y II respectivamente. Antes de aplicar
los métodos, es necesario transformar los registros temporales en aceleración al dominio de la
frecuencia. Para ello, va a usarse el comando fft de MATLAB® que calcula la transformada discreta
de Fourier (DFT) utilizando un algoritmo de FFT.

La señal se ha discretizado a una frecuencia de muestreo, fs, de 4096 Hz para evitar el aliasing
con un total de 16384 puntos. Con estos parámetros, se pueden tomar datos contenidos en un
intervalo de 4 s. No es necesario aplicar funciones ventanas para evitar el leakage, ya que, tomando
el primer registro en el instante 0,95 s y el último 4 s más tarde, puede considerarse que no hay
discontinuidad entre el primer y el último dato. En cuanto al espectro de aceleración en frecuencia,
se extiende hasta los 2048 Hz con una resolución de 0,25 Hz. En la figura 6.8, se muestran los
espectros de aceleración obtenidos para el primer ensayo de la configuración I y II, respectivamente,
con los primeros seis picos de resonancia marcados. Se ha omitido representar el resto de espectros
en favor de la brevedad, debido a que los resultados son muy similares para todos los ensayos de
una misma configuración.
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Figura 6.8 Espectros del acelerómetro 16 en el primer ensayo y picos seleccionados para:
(a) Configuración I; (b) Configuración II.
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En estas gráficas se observa que los picos de resonancia están lo suficientemente alejados. Por
tanto, la suposición de que los modos están desacoplados entre sí, propia de los métodos SDOF, se
cumple, pudiendo afirmar que la estimación se aproxima a la realidad.

Para obtener los modos mediante el mode picking, se han normalizado los valores de los espectros
de aceleración en las frecuencias naturales en cada sensor con respecto al del acelerómetro más
cercano al extremo libre. Operando de esta manera, se consigue que la última componente del
modo calculado para cada configuración sea unitaria. La parte imaginaria de los modos no se ha
considerado para calcular los valores del MAC ni para representarlos gráficamente en estos análisis.

Con los modos estimados, se calculan las matrices MAC para cada configuración usando siempre
los modos del primero de los ensayos como conjunto de vectores de referencia. Actuando así, se
verifica si existe correlación entre los modos obtenidos en los distintos ensayos de una misma
configuración. A continuación, en las figuras 6.9 y 6.10 se muestran las matrices MAC comparando
los modos obtenidos del primer ensayo y del segundo tanto para la configuración I como para la II.
El resto de las matrices MAC aportan resultados prácticamente iguales, por lo que no se incluyen en
la memoria.

Figura 6.9 Representación 2D y numérica del MAC para el segundo ensayo de la configuración I.

Figura 6.10 Representación 2D y numérica del MAC para el segundo ensayo de la configuración II.

Claramente, se puede observar que los modos identificados en las distintas pruebas de una
misma configuración son los mismos, ya que los términos de la diagonal principal son 1, y el resto
aproximadamente 0. Habiendo comprobado la correlación entre las estimaciones mediante el MAC
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se ha decidido promediar las frecuencias naturales y los factores de amortiguamiento obtenidos con
el peak picking para las cinco pruebas de cada configuración para comparar los resultados. En la
tabla 6.1 se muestran los valores de los seis primeros modos identificados.

Tabla 6.1 Media de las seis primeras frecuencias naturales y factores de amortiguamiento identifi-
cados entre ensayos de una misma configuración mediante peak picking.

Configuración I Configuración II

Modo n ω̄n (Hz) ξ̄n (%) ω̄n (Hz) ξ̄n (%)

1 11,75 0,7774 11,75 1,2339

2 73 0,2213 73 0,2144

3 206,75 0,7769 206 0,6147

4 403 0,2449 402,75 0,2766

5 662,75 0,2657 662,15 0,2349

6 986,55 0,2503 986,8 0,2954

Observando la tabla, se puede apreciar que las frecuencias naturales estimadas en ambas confi-
guraciones son prácticamente idénticas para los seis primeros modos de la viga. En cambio, los
factores de amortiguamiento no toman el mismo valor, especialmente en los modos 1 y 3, donde
las diferencias son notables. Este hecho puede ser debido al carácter local del peak picking y no
necesariamente a captar medidas en distintos puntos de la viga.

Para reflejar la información de los modos identificados se ha decidido representarlos en un eje
de coordenadas, donde el eje X está asociado a la posición horizontal de cada punto de medida
y en el eje Y se representa el desplazamiento modal de dicho punto. Para posteriormente poder
compararlos con los modos obtenidos con el método de Ibrahim y los modos teóricos según el
modelo de viga de Euler-Bernoulli, los desplazamientos modales de la configuración I han sido
multiplicados por el valor escalar del desplazamiento modal teórico en el punto de medida 31. Se ha
actuado de la misma forma para la configuración II con el punto de medida 32. En la figura 6.11 se
muestran los modos obtenidos con los datos experimentales del ensayo 1 de la configuración I y II.
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Figura 6.11 Deformadas de los primeros seis modos identificados mediante mode picking en el ensayo 1.
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A simple vista, se comprueba que la forma de los modos se corresponde con la obtenida analíti-
camente, excepto para el primer modo. Su deformada, a pesar de tener un aspecto similar al modo
teórico, presenta irregularidades en los 16 primeros puntos de medida. Para el resto de ensayos, las
gráficas que se obtienen son idénticas por lo que se han excluido de esta memoria.

6.3.2 Método de Ibrahim

Para realizar una estimación global de los parámetros modales se va a aplicar el ITD con los códigos
desarrollados en MATLAB® . Para ello, ciertos parámetros del método se han mantenido constantes
desde el principio. Los motivos de esta decisión y los valores escogidos son los siguientes:

• Número de medidas reales, p: se han usado los datos captados por los 16 acelerómetros en
cada configuración, ya que, de esta manera se disponen de más medidas para generar las
matrices χ y χ̂. Además, se consigue que las formas modales queden mejor descritas a la
hora de visualizarlas.

• Desfases temporales ∆t1 y ∆t3: teniendo en cuenta la restricción impuesta por la ecuación
3.19, se ha seleccionado un ∆t1 = 1

4096 s, de forma que se puedan llegar a identificar
frecuencias hasta los 2048 Hz. En cuanto a ∆t3, su valor es igual que ∆t1 para disminuir la
toma de decisiones del operador.

• Espaciado entre registros, h: dado que se están trabajando con datos procedentes de la
respuesta ante vibración libre que se atenúan en un corto espacio de tiempo (figura 6.7), se
ha escogido h = 1

4096 s. De esta forma, se pueden tomar una mayor cantidad de registros que
construyan las matrices χ y χ̂ antes de que se entre en la región donde el ruido predomina
por encima de la señal de interés.

• Desfases temporales de las pseudoestaciones, ∆t2: aunque no se sepa a priori la cantidad de
pseudoestaciones introducidas, se sabe que para aplicar el criterio del MCF al menos hay que
introducir una pseudoestación. En cuanto a los desfases temporales, tomarán los valores de
una sucesión de números primos multiplicada por la resolución del sistema de adquisición de
datos. La expresión usada es la siguiente: ∆t2 = [17 29 41 53 ...] 1

4096 s.

• Valor del MCF de corte, MCFcorte: al igual que en el análisis hecho en el capítulo 4, se ha
seleccionado un MCFcorte de 0,9.

Respecto al resto de parámetros, aunque no se haya fijado su valor, se tiene una idea del rango en el
que deben encontrarse algunos de ellos para un correcto funcionamiento del método. A continuación,
se explican las razones:

• Instante del primer registro, t0: ha de tomarse instantes posteriores a la aplicación del impacto
con el martillo para que se disipe el efecto del choque, pero no muy lejanos al comienzo de
la vibración libre. Una referencia para este valor está en el entorno de los 0,05 s desde el
impacto del martillo aproximadamente.

• Instante del último registro, tf : debido al confeccionado del código este parámetro depende
de la elección del resto. Sin embargo, se sabe que han de tomarse registros que sean próximos
al comienzo de la vibración libre para evitar regiones donde los valores de la respuesta sean
casi nulos. Por tanto, observando la figura 6.7 se ha optado por que, tras seleccionar el resto
de parámetros del ITD, tf esté alrededor de los 1,5 s.

En cuanto al número de columnas de las matrices χ y χ̂ y la cantidad de pseudoestaciones a
introducir, teóricamente se supone que, cuanto más altos sean sus valores, el método estima con
mayor exactitud los modos de vibración del sistema. No obstante, se ha comprobado en el capítulo
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4 que, a partir de cierto punto, los errores pueden aumentar o incluso el criterio del MCF puede
descartar modos candidatos.

Con toda esta información en mente, se han realizado barridos de los parámetros t0, ncol y de
la cantidad de pseudoestaciones introducidas, para ver la variación de las frecuencias naturales y
factores de amortiguamiento estimados. Tras analizar los resultados obtenidos con los barridos a
cada ensayo experimental, los parámetros seleccionados para aplicar el ITD se detallan en la tabla
6.2.

Tabla 6.2 Parámetros seleccionados del ITD para la viga en voladizo.

Parámetro Símbolo Valor
Número de estaciones reales p 16
Número de medidas ficticias k · p 64
Desfases temporales de las

pseudoestaciones ∆t2 [17 29 41 53] 1
4096 s

Instante del primer registro t0 (1 + 310
4096) s ∼ 1,076 s

Número de columnas de χ y χ̂ ncol 1500
Espaciado entre registros h 1

4096 s
Desfase entre X y X̄ ∆t3

1
4096 s

Desfase entre χ y χ̂ ∆t1
1

4096 s
Instante del último registro tf (1 + 1864

4096) s ∼ 1,455 s
MCF de corte MCFcorte 0,9

Con esta selección propuesta, tras aplicar el criterio del MCF, se consiguen identificar desde
el segundo hasta el sexto modo del sistema para todos los ensayos de las dos configuraciones. No
ocurre lo mismo para el primer modo, que sólo es posible describirlo al completo con los 32 puntos
de medida al aplicar el ITD a los datos experimentales de los ensayos 1 y 4 en ambas configuraciones.
Los modos obtenidos se han normalizado con respecto a la última componente para que ésta sea
unitaria y no se ha tenido en cuenta la parte imaginaria de los modos, al igual que se hizo en el mode
picking. De esta forma, se obtienen dos tipos de matrices MAC para cada configuración usando
como conjunto de modos de referencia los obtenidos en el primero de los ensayos.

Figura 6.12 Representación 2D y numérica del MAC para el segundo ensayo de la configuración I.
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Figura 6.13 Representación 2D y numérica del MAC para el cuarto ensayo de la configuración I.

Figura 6.14 Representación 2D y numérica del MAC para el segundo ensayo de la configuración II.

Figura 6.15 Representación 2D y numérica del MAC para el cuarto ensayo de la configuración II.

A simple vista se ve que las matrices MAC no coinciden en el tamaño de columnas para el
ensayo 2 y 4 de una misma configuración. Esto es debido a que, como se dijo anteriormente, sólo
se ha conseguido identificar el primer modo de vibración en el primer ensayo y en el cuarto. Lo
más destacable de las cuatro imágenes es la alta correlación entre los vectores asociados a un
mismo modo obtenido con distintos ensayos, ya que, cuando coinciden fila y columna del modo
asociado su valor es casi 1. También se ve que cuando no coinciden, los valores que toma el MAC
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son muy próximos a 0, pudiendo interpretarse esto como un indicador de ortogonalidad entre los
modos estimados. Con esta información, se ha optado por promediar las frecuencias naturales, los
amortiguamientos y los MCF del segundo al sexto modo obtenidos con el ITD. En cambio, para los
parámetros del primer modo se ha decidido reflejar el valor que devuelve el ITD para cada ensayo.
A continuación, en las tablas 6.3 y 6.4 se detallan estos resultados.

Tabla 6.3 Media de las frecuencias naturales, factores de amortiguamiento y MCF, del modo 2 al 6,
entre ensayos de una misma configuración mediante ITD.

Configuración I Configuración II

Modo n ω̄n (Hz) ξ̄n (%) MCF ω̄n (Hz) ξ̄n (%) MCF

2 72,9342 0,2527 0,9933 72,9912 0,2320 0,9980

3 206,6019 0,6269 0,9702 206,3318 0,5609 0,9931

4 402,8635 0,2327 0,9981 402,8272 0,2594 0,9990

5 662,5800 0,2717 0,9436 661,9733 0,2361 0,9813

6 986,2864 0,2545 0,9783 986,7461 0,3010 0,9964

Tabla 6.4 Frecuencia natural, factor de amortiguamiento y MCF del primer modo para los ensayos
1 y 4 aplicando el ITD.

Configuración I Configuración II

Ensayo ω1 (Hz) ξ1 (%) MCF ω1 (Hz) ξ1 (%) MCF

1 11,6991 2,1356 0,9458 11,6829 0,6749 0,9652

4 11,6926 1,1117 0,9427 11,6929 1,1708 0,9041

Analizando la tabla 6.3, puede verse que tanto las frecuencias naturales como los factores de
amortiguamiento identificados en las dos configuraciones tienen valores muy similares entre sí para
todos los modos. Además, excepto la identificación del quinto modo para la primera configuración,
todas tienen un MCF superior al 95 %. De entre todos los modos destacan por su exactitud el
segundo y el cuarto, cuyo MCF es muy próximo a 1, indicando que se corresponden con modos de
vibración de la estructura.

Respecto a la tabla 6.4, se aprecia que el valor de la frecuencia natural es prácticamente el mismo
en todos los ensayos. Sin embargo, los factores de amortiguamiento toman valores muy distintos,
incluso para ensayos de una misma configuración. Este hecho, junto a que los MCF no son tan
cercanos a 1, hace pensar que la estimación del primer modo no es correcta, al igual que ha pasado
con los métodos del peak picking y mode picking.

En cuanto a los valores de los modos de vibración identificados, representándolos siguiendo el
mismo procedimiento que en el caso del mode picking, se obtiene la gráfica de la figura 6.16 en el
caso del ensayo 1.

De nuevo, se verifica que la deformada de los modos estimados es parecida a la obtenida de forma
teórica con el modelo de viga de Euler-Bernoulli, menos en el caso del primer modo. La repetición
de este hecho, tanto en el caso del peak picking y mode picking como en el ITD, hace pensar que
estas discrepancias no se deben al método utilizado, sino que residen en aspectos relativos al montaje
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Figura 6.16 Deformadas de los primeros seis modos identificados mediante ITD en el ensayo 1.

experimental, sensores, fuerza de excitación, etc. o a diferencias en el comportamiento dinámico de
la estructura real y la teórica.

6.4 Comparación de los resultados analíticos y los experimentales

Una vez estimados los parámetros modales de la viga ensayada en el laboratorio mediante peak
picking, mode picking e ITD, van a compararse estos valores entre sí y con los obtenidos de
forma analítica en el capítulo 5. En la tabla 6.5 se recopilan las frecuencias naturales calculadas
mediante los distintos métodos aplicados. Las frecuencias naturales del primer modo obtenidas con
el ITD están marcadas con un asterisco porque su media se ha calculado únicamente a partir de los
resultados de los ensayos 1 y 4.

Tabla 6.5 Frecuencia naturales teóricas y media de las seis primeras frecuencias naturales identifi-
cadas mediante peak picking e ITD.

Configuración I Configuración II

Teórico Peak picking ITD Peak picking ITD

Modo n ωn (Hz) ω̄n (Hz) ω̄n (Hz) ω̄n (Hz) ω̄n (Hz)

1 13,055 11,75 11,6959 ∗ 11,75 11,6879 ∗

2 81,814 73 72,9342 73 72,9912

3 229,081 206,75 206,6019 206 206,3318

4 448,908 403 402,8635 402,75 402,8272

5 742,077 662,75 662,5800 662,15 661,9733

6 1108,535 986,55 986,2864 986,8 986,7461

En primer lugar, salta a la vista que las frecuencias naturales teóricas y las experimentales son
distintas en todos los casos, pero han cumplido su función orientativa para asociar las frecuencias
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naturales identificadas con el modo de vibración del sistema. En cuanto a la comparación entre los
valores obtenidos con peak picking y con el ITD, son aproximadamente iguales independientemente
del modo y la configuración observada. Por tanto, puede afirmarse que la identificación de las
frecuencias naturales ha sido correcta.

Para hacer un análisis más exhaustivo acerca de las diferencias entre los resultados teóricos y los
experimentales, se ha calculado el error relativo (%) entre la frecuencia teórica y la experimental
obtenida en cada configuración, dependiendo del método utilizado. En la tabla 6.6 se refleja la
información obtenida.

Tabla 6.6 Error relativo (%) entre las frecuencias naturales teóricas y la media de las seis primeras
frecuencias naturales identificadas mediante peak picking e ITD.

Configuración I Configuración II

Modo n Peak picking ITD Peak picking ITD

1 9,996 10,410 ∗ 9,996 10,4715 ∗

2 10,773 10,854 10,773 10,784

3 9,748 9,813 10,076 9,931

4 10,227 10,257 10,282 10,265

5 10,690 10,713 10,771 10,795

6 11,004 11,028 10,982 10,987

Se aprecia que el error está en el rango del 10 al 11 % aproximadamente para todos los modos y
métodos. Es decir, la diferencia de orden de magnitud entre los valores teóricos y los experimentales
es consistente. Esto sugiere la idea de que el modelo teórico usado no describe fielmente la estructura
ensayada. Una de las posibles causas de este suceso es la introducción de los acelerómetros y los
tornillos, que pueden considerarse como masas puntuales colocadas a lo largo de la viga. También
ha podido afectar a la masa y rigidez del sistema el haber realizado agujeros en la viga para colocar
los acelerómetros y los tornillos.

Respecto a los factores de amortiguamiento, en el modelo teórico empleado no se han introducido
términos que tengan en cuenta este efecto, por lo que únicamente van a compararse los resultados
obtenidos con peak picking e ITD para las dos configuraciones. Para ello, se han usado los valores
medios de los factores de amortiguamiento estimados en cada ensayo, en la tabla 6.7 se muestran
los resultados. El factor de amortiguamiento del modo 1 obtenido al aplicar el ITD ha sido excluido,
ya que sólo se ha identificado con los datos del ensayo 1 y 4, con grandes discrepancias entre sí.

Si se pasa por alto el primer modo y el tercero, para el resto de casos, los factores de amortigua-
miento son muy parecidos entre sí, independientemente del método utilizado o de la configuración
que se observe. Un motivo posible de las diferencias de los factores de amortiguamiento estimados
para el modo 1 y 3 es que sus valores son superiores al 0,5 %. Esto puede suponer que los métodos
aplicados no funcionen correctamente, ya que, por un lado, el método del ancho de banda usado en
el peak picking supone que ξn es muy pequeño, y, por otra parte, se ha explicado que los métodos
de estimación en el dominio del tiempo, como es el ITD, son más adecuados para casos en los que
el sistema está ligeramente amortiguado.
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Tabla 6.7 Media de los seis primeros factores de amortiguamiento identificados mediante peak
picking e ITD.

Configuración I Configuración II

Peak picking ITD Peak picking ITD

Modo n ξ̄n (%) ξ̄n (%) ξ̄n (%) ξ̄n (%)

1 0,7774 ∼ 1,2339 ∼

2 0,2213 0,2527 0,2144 0,2320

3 0,7769 0,6269 0,6147 0,5609

4 0,2449 0,2327 0,2766 0,2594

5 0,2657 0,2717 0,2349 0,2361

6 0,2503 0,2545 0,2954 0,3010

Por último, van a compararse entre sí los modos teóricos, los obtenidos mediante mode picking y
los obtenidos mediante el ITD. Para ello, va a usarse el MAC para cuantificar la correlación existente
entre ellos y de forma visual representando en una misma gráfica, para cada modo, la deformada
calculada con cada método. Este proceso se va a aplicar con los modos de vibración identificados a
partir de los datos experimentales del ensayo 1 y, en favor de la brevedad, para el resto de pruebas
no se muestran los resultados por ser prácticamente iguales.

En las figuras 6.17, 6.18 y 6.19 se muestran las matrices MAC calculadas, siendo el conjunto de
modos de referencia el que está situado a la izquierda de la gráfica.

Figura 6.17 Representación 2D y numérica del MAC entre modos teóricos y obtenidos con mode
picking.

En las tres imágenes se observa que los términos de la diagonal principal son muy cercanos a 1,
indicando la consistencia de los modos calculados mediante las distintas vías. El resto de términos
de la matriz son prácticamente 0, por lo que puede tomarse como un indicador de ortogonalidad.
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Figura 6.18 Representación 2D y numérica del MAC entre modos teóricos y obtenidos con el ITD.

Figura 6.19 Representación 2D y numérica del MAC entre modos obtenidos con mode picking y
con el ITD.

No obstante, cuando se comparan los modos teóricos con cualquiera de los calculados mediante
los métodos experimentales, los valores de la diagonal principal no son tan próximos a 1 como en
el caso de comparar los modos obtenidos con el mode picking y el ITD, lo que hace pensar que las
estimaciones de los modos obtenidas con estos métodos son muy similares. Este hecho se evidencia
al representar las tres maneras en las que se ha calculado la deformada de cada modo en una misma
gráfica. En las figuras 6.20, 6.21, 6.22, 6.23, 6.24 y 6.25 se muestran las gráficas obtenidas para
el modo 1, 2, 3, 4, 5 y 6, respectivamente. Los marcadores cuadrados y circulares representan los
desplazamientos transversales de los puntos de medida impares y pares, respectivamente, con el
mode picking, mientras que las cruces y los puntos siguen la misma regla pero para la identificación
con el ITD.

Al observar las gráficas, puede comprobarse que los modos estimados experimentalmente son
muy parecidos a los del modelo teórico de viga en voladizo, como indicaba el criterio del MAC,
tanto al usar el mode picking como con el ITD. Especialmente, destacan los modos 2 y 3, donde los
desplazamientos modales de los puntos de medida casi coinciden con los del modelo analítico. Si
ahora se compara la forma de los modos calculados aplicando el mode picking y usando el ITD, es
casi idéntica en todos los modos. Esto se aprecia muy bien gracias a la elección de los marcadores.
Puede verse como, en general, las cruces y los puntos quedan enmarcados dentro de los cuadrados
y los círculos, respectivamente, lo que evidencia que los modos identificados con ambos métodos
son aproximadamente iguales.
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Figura 6.20 Deformadas del primer modo en el ensayo 1.
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Figura 6.21 Deformadas del segundo modo en el ensayo 1.
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Figura 6.22 Deformadas del tercer modo en el ensayo 1.
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Figura 6.23 Deformadas del cuarto modo en el ensayo 1.
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Figura 6.24 Deformadas del quinto modo en el ensayo 1.
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Figura 6.25 Deformadas del sexto modo en el ensayo 1.



7 Conclusión

En este capítulo se detallan las conclusiones principales tras el trabajo realizado y algunas de
las vías a desarrollar en futuras investigaciones para mejorar los resultados obtenidos en esta

memoria o extraer más información de los datos experimentales.

7.1 Conclusiones

En esta memoria se ha hecho un extenso análisis de cómo funciona el ITD para sistemas con
múltiples grados de libertad. Se ha comprobado que el método consigue estimar con gran exactitud
los parámetros modales en el caso de no haber ruido. No obstante, cuando la señal de la respuesta está
contaminada por ruido, también sigue siendo capaz de identificar, aunque empeorando ligeramente
los resultados, las frecuencias naturales, factores de amortiguamiento y modos de vibración, sin
necesidad de filtrar la señal captada.

Por otra parte, se ha visto que una de las desventajas que tiene el ITD es la cantidad de parámetros
que debe seleccionar el operador para aplicar el método, como los desfases temporales de las
pseudoestaciones∆t2, el instante del registro inicial t0, el desfase temporal∆t1, etc. Se ha detectado
que al hacer una elección distinta de los parámetros, las estimaciones realizadas pueden variar
bastante o incluso descartar polos y modos que realmente describen el comportamiento dinámico
de la estructura.

Por tanto, si se quieren obtener correctamente los parámetros modales del sistema analizado,
el operador debe hacer un estudio previo a la aplicación final del ITD. Para ello, puede emplear
el propio ITD variando sus parámetros para ver dónde se estabilizan las frecuencias naturales y
factores de amortiguamiento, calcular los parámetros modales a partir de un modelo teórico que
describa la estructura real o identificarlos mediante otros métodos de estimación propios del análisis
modal experimental.

Cuando se ha aplicado a la viga en voladizo ensayada en el laboratorio, se han empleado esas
tres vías para tratar de conseguir los mejores resultados, y de hecho, ha sido muy eficaz. Al actuar
así, se ha comprobado que las estimaciones realizadas con peak picking y mode picking han sido
muy similares a las hechas con la selección final de parámetros del ITD, debido a que los modos
estaban bien desacoplados entre sí y, en general, los factores de amortiguamiento eran muy bajos.
En cambio, ha habido mayores diferencias entre las estimaciones experimentales y los valores
teóricos de las frecuencias naturales del sistema. Sin embargo, se ha concluido que, al estar los
errores relativos contenidos alrededor del 10 al 11 % para todos los modos, las discrepancias se
deben a que en el modelo analítico no se han tenido en cuenta los cambios en las propiedades del
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sistema que generan los acelerómetros, los tornillos y los agujeros hechos en la propia viga para
colocar ambos elementos.

Por último, es destacable que los parámetros modales obtenidos a partir de los datos experimen-
tales de los distintos ensayos han sido casi idénticos, hecho verificado con las matrices MAC que
han señalado una gran correlación entre los resultados calculados para las diferentes pruebas.

7.2 Propuestas de mejora

Sería recomendable para completar aún más el trabajo realizado implementar las siguientes medidas:

• Exactitud del ITD al variar porcentaje de ruido: sería útil saber cómo cambian las estimaciones
con los mismos parámetros seleccionados del ITD, al variar la cantidad de ruido que contiene
la señal captada. Esta información podría usarse para establecer un criterio en el que a partir
de cierto porcentaje de ruido, se filtre la señal para tratar de mejorar la estimación de los
parámetros modales.

• Uso de métodos MDOF en el dominio de la frecuencia: al aplicar este tipo de métodos se
estimarían los parámetros modales haciendo uso de los datos captados en los 16 acelerómetros
para cada ensayo. Con ello, la comparación de los resultados sería más coherente ya que
ambos métodos cuentan con la misma información de partida y podría comprobarse cuál
funciona mejor.

• Estimación de los parámetros modales mediante el MEF: describir la viga mediante un modelo
de elementos finitos tridimensionales en softwares comerciales, por ejemplo ANSYS®, para
así tener en cuenta los efectos introducidos por los acelerómetros, tornillos y agujeros en las
propiedades de la viga. De esta manera, los resultados experimentales y los teóricos serían
más próximos entre sí, y el modelo teórico desarrollado podría ser usado para calcular el
comportamiento del sistema ante excitaciones más complejas o al variar sus propiedades
mecánicas.

• Uso de datos captados con el martillo de impacto: teniendo en cuenta, además de los registros
en aceleración, los registros de fuerza recogidos por el martillo de impacto se podrían
conocer los coeficientes de participación modal de la viga. Con esta información, sería
posible determinar cuánto contribuye cada modo a la respuesta dinámica del sistema. Si
alguno de ellos fuera despreciable respecto al resto por tener un valor muy bajo, se podría
generar un modelo teórico que no tuviera en cuenta este modo para así disminuir el coste
computacional.

• Aplicación a sistemas de mayor complejidad: una vez familiarizados con los procedimientos
propios del análisis modal experimental, se podrían estudiar estructuras más complejas, como
edificios o vehículos. Con ello, las estimaciones de los parámetros modales mediante ensayos
experimentales podrían usarse para validar modelos analíticos. Dichos modelos serían útiles
para ver las variaciones en el comportamiento dinámico de la estructura al cambiar el diseño
de la misma. De esta manera, se evita fabricarla hasta que no cumpla las especificaciones
deseadas en el modelo teórico.



Apéndice A
Códigos para implementar el ITD

A continuación, se incluyen parte de los archivos y funciones implementados en MATLAB® usadas
en esta memoria. Con ellas se pueden calcular polos y modos usando el ITD para un caso general y
los criterios de validación de parámetros.

A.1 Generación de pseudoestaciones

Código A.1 Función para crear pseudoestaciones a partir de los datos captados y vector ∆t2.

function [registros,pseudomedidas] = pseudoestaciones(sensores,
deltatau_s,CR)

% Esta función genera pseudoestaciones para aplicar ITD. Las
pseudoestaciones

% se asocian a los sensores reales a partir del desfase temporal
deltatau.

% Los parámetros de entrada son:
% sensores: medidas recogidas en los sensores de captación de datos en

vectores columna
% deltatau_s: vector que contiene el desfase temporal de cada

pseudoestación
% con respecto a la estación real ordenados de menor a mayor
% CR: resolución temporal del sensor usado
% La función devuelve las variables:
% registros: conjunto de medidas y pseudomedidas agrupadas en una misma
% variable con la misma cantidad de puntos
% pseudomedidas: pseudomedidas generadas para cada pseudoestación esta

información podría ser prescindible

npseudo=length(deltatau_s); % cantidad de pseudoestaciones

if deltatau_s(1) ~= 0 % en caso de haber pseudoestaciones se asignan sus
valores
deltatauptos=round(deltatau_s(npseudo)/CR);
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% desfase en componentes entre estación real y ultima pseudoestación
nombre = sprintf(’n%d’, npseudo); % número de la estación
pseudomedidas.(nombre)=sensores(deltatauptos+1:end,:); % asignación

de medidas a la última pseudoestación
ptos=height(pseudomedidas.(nombre)); % máxima cantidad de puntos que

puede tener cualquier estación

registros=zeros(ptos,(npseudo+1)*width(sensores)); % inicialización
de los registros

registros(:,1:width(sensores))=sensores(1:ptos,:);
% guarda las n medidas reales tomadas en las estaciones reales en

las primeras n columnas de los registros
registros(:,npseudo*width(sensores)+1:end)=pseudomedidas.(nombre); %

coloca última pseudoestación

for i=npseudo-1:-1:1
% Proceso similar para el resto de pseudoestaciones
deltatauptos=round(deltatau_s(i)/CR);
nombre = sprintf(’n%d’, i);
pseudomedidas.(nombre)=sensores(deltatauptos+1:end,:);
registros(:,i*width(sensores)+1:(i+1)*width(sensores))=

pseudomedidas.(nombre)(1:ptos,:);
end

else
% si no hay pseudoestaciones los registros serán las medidas tomadas en

los sensores
registros=sensores;
pseudomedidas=[];
end

end

A.2 Aplicación del ITD

Código A.2 Función para aplicar ITD a partir de los registros seleccionados.

function [polos,modos,varargout]=ITD(ncol,t0,deltat1,deltat3,h,CR,
registros)

% Esta función aplica el método de Ibrahim a los registros
proporcionados

% de la estructura excitada, devolviendo todos los polos y modos del
% sistema, tanto los reales de la estructura como los asociados al ruido
% del sistema de medición.
% Los parámetros de entrada son:
% ncol: cantidad de columnas de la matriz \chi y \hat{\chi}
% t0: Valor del primer instante que se usa [s]
% deltat1: desfase de \chi respecto \hat{\chi} [s]
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% deltat3: desfase de X respecto a \bar{X} [s]
% h: espaciado temporal entre los registros usados [s]
% CR: resolución temporal del sistema de adquisición [s]
% registros: medidas recogidas en los sensores y pseudomedidas generadas

% La función devuelve las variables:
% polos: todos los polos calculados ordenados de menor a mayor módulo
% modos: todos los modos calculados ordenados según índices de los polos

varargout=cell(1,nargout);

i_0=round(t0/CR)+1; % primera comp. de los registros usados
int=round(h/CR); % espaciado en componentes entre los registros usados
deltaptos1=round(deltat1/CR); % desfase en componentes deltat_1
deltaptos3=round(deltat3/CR); % desfase en componentes deltat_3

N=size(registros,2); % número total de medidas

registros=registros’; % se cambia a registros contenidos en filas

% términos matriz \chi
X=registros(1:N,i_0:int:i_0+(ncol-1)*int);
Xdeltat3=registros(1:N,i_0+deltaptos3:int:i_0+deltaptos3+(ncol-1)*int);

% términos matriz \hat{\chi}
Xdeltat1=registros(1:N,i_0+deltaptos1:int:i_0+deltaptos1+(ncol-1)*int);
Xdeltat1deltat3=registros(1:N,i_0+deltaptos1+deltaptos3:int:i_0+

deltaptos1+deltaptos3+(ncol-1)*int);

% construcción de las matrices para aplicar el método
chi=[X;Xdeltat3];
chigorro=[Xdeltat1;Xdeltat1deltat3];

lastwarn(’’);
warning off MATLAB:singularMatrix
warning off MATLAB:nearlySingularMatrix

if width(chi)==height(chi)
% caso en el que la matriz chi sea cuadrada
invchi=chi\eye(2*N);
[modosaux,polosaux]=eig(chigorro*invchi);
polosaux=diag(polosaux);
disp(’La matriz chi resultante es cuadrada’)
else
% caso en el que la matriz chi no sea cuadrada
invchichiT=(chi*chi.’)\eye(2*N);
[~, warn_id]=lastwarn; % capta si la matriz construida puede dar lugar a
% mal condicionamiento numérico
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if isequal(warn_id,’MATLAB:singularMatrix’) | isequal(warn_id,’MATLAB:
nearlySingularMatrix’)

varargout{1}=1;
% si queremos que nos avise de que hay mal condicionamiento numérico sin
% mostrar warnings por pantalla
fprintf([’El condicionamiento de la matriz ’,[char(967),char(967)],’^T

es %d \n’],rcond((chi*chi.’)))
end

[modosaux,polosaux]=eig(chigorro*chi.’*invchichiT);
polosaux=diag(polosaux); % extrae autovalores de la diagonal principal
end

polos=log(polosaux)/deltat1; % ecuación para calcular polos del sistema
a partir de autovalores

[polos,idx]=sort(polos,’ComparisonMethod’,’abs’); % ordena pares de
polos según su módulo de menor a mayor

warning on MATLAB:singularMatrix
warning on MATLAB:nearlySingularMatrix

modos=[modosaux(1:N,idx)./modosaux(N,idx);modosaux(N+1:2*N,idx)./
modosaux(2*N,idx)];

% se normalizan los modos respecto su última componente para cada mitad
% inferior y superior de la matriz
end

A.3 Obtención del MCF

Código A.3 Función para calcular el MCF de los polos y modos obtenidos.

function MCF=ModalCF(modos,polos,deltatau_s)

% Esta función obtiene el Modal Confidence Factor (MCF) de los modos y
polos del

% sistema hallados mediante el ITD. Para aplicar el método son
necesarios los

% siguientes parámetros de entrada.
% modos: modos obtenidos al aplicar ITD
% polos: polos obtenidos al aplicar ITD
% deltatau_s: vector fila que contiene los desfases de las

pseudoestaciones con
% respecto a la estación real. En caso de no haber no lo hace.
% La función devuelve:
% MCF: modal confidence factor para cada autovalor obtenido
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M=width(modos); % Estaciones totales del sistema
p=0.5*M/(length(deltatau_s)+1); % cantidad de estaciones reales del

sistema
if deltatau_s(1)==0
p=0.5*M;
end
MCF=2*ones(M,1); % hay un modal confidence factor por modo del sistema

for r=1:M % recorre los M modos (columnas)
for n_est=1:length(deltatau_s) % recorre las pseudoestaciones añ

adidas
for ii=1:p % recorre las componentes ii de los modos

asociadas a las p medidas reales (filas)
Qbarraexp=modos(ii,r)*(exp(polos(r)*deltatau_s(n_est)));
% deltatau(n_est) cambia el deltatau cuando cambia la

pseudoestación analizada
Qbarra=modos(ii+n_est*p,r);
if abs(Qbarraexp)/abs(Qbarra)<1

MCFaux=abs(Qbarraexp/Qbarra);
else

MCFaux=abs(Qbarra)/abs(Qbarraexp);
end
% compara el MCF calculado para la componente de un modo

con el menor hasta ese momento
if MCFaux<MCF(r,1)

MCF(r,1)=MCFaux;
end

end
end

end
end

A.4 Obtención y representación del MAC

Código A.4 Función para calcular matriz MAC y mostrar su gráfica 2D.

function [MSCC] = ModeSCC(modosA,modosB)
% ModeSCC Esta función calcula el Modal Assurance Criterion entre dos

conjuntos de modos
% Los parámetros de entrada son:
% modosA: modos identificados en el ensayo A / modos de referencia
% modosB: modos identificados en el ensayo B

MSCC=zeros(size(modosA,2),size(modosB,2)); % inicialización del MSCC
for ii=1:size(modosA,2) % recorre las columnas de la matriz de modos del

ensayo A
for jj=1:size(modosB,2) % recorre las columnas de la matriz de modos

del ensayo B
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num=abs(modosA(:,ii).’*conj(modosB(:,jj))); % numerador del MSCC
den=(modosA(:,ii).’*conj(modosA(:,ii)))*(modosB(:,jj).’*conj(

modosB(:,jj))); %denominador del MSCC
MSCC(ii,jj) = (num^2)/den;

end
end

% Representación 2-D del MAC
figure;
h = bar3(MSCC, 1); % gráfico barras 3D sin espacio entre ellas

n = 256; % Cantidad de filas del mapa de colores a usar
cmap = flipud(gray(n)); % el mapa de color gray va de negro a blanco,

flipud lo invierte
colormap(cmap); % Aplica el colormap a la figura actual
%colormap(sky); % define mapa de colores de blanco a azul

colorbar; % barra de colores graduada de 0 a 1 junto a gráfica
clim([0 1]) % limita los valores de la barra de colores

% Asignar color según MSCC
for k = 1:length(h)

zdata = get(h(k),’ZData’);
set(h(k), ’CData’, zdata);

end

view(0,90) % vista 2D
set(gca,’FontSize’,22)
ejes=gca;
ejes.TickLength = [0 0]; % no marca ticks en gráficas
axis equal
grid off
xlim([0.5 ii+0.5])
ylim([0.5 ii+0.5])
xlabel(’Modo asociado’,’Interpreter’,’latex’,’FontSize’,28)
ylabel(’Modo asociado’,’Interpreter’,’latex’,’FontSize’,28)
ejes.XAxisLocation=’top’;

end
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