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Resumen

n este trabajo, se van a estimar mediante diferentes métodos propios del anélisis modal expe-
rimental los pardmetros modales de una viga en voladizo ensayada en el laboratorio.

Primero se hace un breve repaso sobre el andlisis modal introduciendo los conceptos clave del
mismo. Luego se describen los métodos empleados en este trabajo, peak picking, mode picking y el
método de Ibrahim, haciendo un profundo anélisis de este dltimo a partir de un ejemplo teérico.

Posteriormente, se calculan analiticamente las frecuencias naturales y los modos de vibracién de
la viga a ensayar. Por dltimo, se comparan los resultados tedricos con los obtenidos mediante las
distintas técnicas de estimacién de pardmetros a partir de los datos experimentales.






Abstract

n this project, the modal parameters of a cantilever beam tested in the laboratory will be estimated
by different methods from experimental modal analysis.

To this end, a brief review of modal analysis is presented, introducing its key concepts. Then, the
methods used in this project, peak picking, mode picking and Ibrahim Time Domain method, are
described, with a detailed analysis of the latter based on a theoretical example.

Subsequently, the natural frequencies and vibration modes of the beam to be tested are analytically
calculated. Finally, the theoretical results are compared with those obtained using the different
parameter estimation techniques applied to the experimental data.
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1 Introduccion

la hora de disefiar una estructura o sistema mecénico, uno de los aspectos a tener en cuenta
A es saber qué respuesta tendrd ante los estimulos a los que se someta, es decir, conocer el
desplazamiento, velocidad y aceleracién al aplicar una fuerza. Los cambios de estas magnitudes
pueden clasificarse en movimientos oscilatorios, en los que la magnitud oscila alrededor de un punto
de equilibrio, y los no oscilatorios. La teoria de vibraciones se ocupa de estudiar el movimiento
oscilatorio.

1.1 Contexto historico

La primera contribucién en este campo se remonta hasta el siglo XVII cuando Galileo hallé la
relacion entre la frecuencia del péndulo simple y su longitud. En ese mismo siglo, Isaac Newton,
basédndose en los estudios de Galileo, enuncid las leyes del movimiento que relacionan el movimiento
de un objeto con las fuerzas que actiian sobre el mismo. Sin duda, para describir las ecuaciones del
movimiento de sistemas vibratorios, la segunda ley de Newton ha sido la mds importante de todas.
Posteriormente, otros cientificos fueron aportando nuevas herramientas para hallar las ecuaciones
del movimiento de un sistema. En el siglo XVIII, D’Alembert incluy6 las fuerzas de inercia en
la segunda ley de Newton tratdndolas como una fuerza aplicada més, en lo que se conoce como
el principio de D’Alembert. Recogiendo las ideas de Newton y D’Alembert, Lagrange desarrollé
unas ecuaciones que permitian formular las ecuaciones diferenciales del sistema dindmico usando
expresiones escalares de la energia del mismo, las ecuaciones de Lagrange. De esta manera se
facilitaba la formulacién de las ecuaciones para sistemas con multiples grados de libertad.

Otras contribuciones importantes a la teorfa de vibraciones fueron las de Hooke, que enunci6
que la tensién en un punto de un cuerpo elastico es proporcional a la deformacién en dicho punto.
Euler y Bernoulli obtuvieron la ecuacién diferencial que rige la vibracién de vigas para pequeiias
deformaciones. Ademads, Bernoulli demostré que un sistema con N masas tenia /N modos de
vibracién independientes y formul6 el principio de superposicion en el que el desplazamiento de un
sistema viene dado como una suma de sus modos de vibracion.

La teoria moderna de las vibraciones fue en gran medida desarrollada por Lord Rayleigh, entre
sus contribuciones estdn el método de Rayleigh, que sirve para obtener las frecuencias naturales
usando el principio de conservacion de la energia, y la correccién de la teorfa de vigas al introducir
el término de la inercia rotacional para mejorar el modelo. Mds adelante, Timoshenko volveria
a mejorar la teorfa de vigas al introducir la deformacién por esfuerzo cortante en el modelo de
vibracién de vigas. Otra de las contribuciones mds usadas en el andlisis de vibraciones de sistemas
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mecdnicos son las series de Fourier, que permiten expresar funciones periédicas como una suma de
funciones arménicas [11].

La teoria de vibraciones se aplica en todo tipo de campos. Por ejemplo, al construir edificios y
puentes se tienen en cuenta para conseguir que las estructuras sean seguras, las suspensiones de los
vehiculos se disefian de forma que, al circular, el habitaculo sea confortable para los pasajeros e
incluso al fabricar instrumentos musicales, para controlar el sonido que generan. En todos ellos, el
objetivo final es satisfacer las necesidades del ser humano.

En el ambito de la ingenieria, las vibraciones influyen en los sistemas en gran medida, pudiendo
incluso causar fallos mecdnicos catastréficos en el mismo si son excesivas. Es por ello que se hace
necesario determinar qué pardmetros de la estructura son los que influyen en su respuesta frente a
distintas excitaciones. Estos pardmetros son las frecuencias naturales, los modos de vibracién y los
factores de amortiguamiento del sistema, y dependen de la masa, rigidez y amortiguamiento del
mismo. Hay varias formas de calcular los pardmetros modales: hacer modelos tedricos del sistema
de los que obtener las ecuaciones de movimiento, usar el método de los elementos finitos (MEF) o
mediante ensayos experimentales. Esta dltima via se conoce como andlisis modal experimental.

1.2 Introduccion al analisis modal experimental

Esta técnica surgi6 alrededor de 1940 con el objetivo de comprender el comportamiento dindmico
de las aeronaves. Sin embargo, hasta finales de la década de los 60, el progreso fue lento debido a
la falta de medios disponibles en esa época. No fue hasta principios de los 70, con la llegada de
los analizadores de espectro por transformada rdpida de Fourier (FFT), analizadores de funcién de
transferencia, y sistemas de adquisicién y analizadores de datos discretos, ademds de ordenadores
digitales mds pequefios, baratos y con mayor capacidad de procesamiento de datos, cuando realmente
se produjeron grandes avances en este campo. En ese momento se sentaron las bases de las técnicas
usadas hasta hoy [3].

El andlisis modal experimental tiene como objetivo conseguir un modelo matemético que describa
el comportamiento dindmico de un sistema. Para ello, el proceso se compone de las siguientes fases:

* Calibracion de los instrumentos de medida y preparacién de las condiciones del ensayo.
» Toma digital de medidas, tanto de entrada como de salida, a partir del ensayo realizado.
» Tratamiento de los datos para la obtencién de los pardmetros modales.

* Validacién de los resultados.

Una vez que se estiman y validan los pardmetros modales, el modelo matemadtico puede definirse
a partir de las frecuencias naturales y los factores de amortiguamiento o como un sistema masa-
muelle-amortiguador. Estos resultados pueden aplicarse para:

* Predecir el comportamiento de una estructura frente a la accién de fuerzas dindmicas.

 Estimar propiedades materiales, como la friccidn o resistencia a fatiga, bajo cargas dindmicas.

* Validar modelos tedricos o modelos de elementos finitos, para luego estimar con ellos el
comportamiento dindmico frente a cargas mds complejas.

* Identificar problemas estructurales, por ejemplo grietas, en puentes, maquinaria o turbinas de
aviones.

* Cambios de disefo en la estructura para mejorar su comportamiento dindmico.

* Analizar el ensamblaje de componentes que conforman un sistema complejo. (Figura 1.1).
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Figura 1.1 Componentes y ensamblaje de la estructura de un helicéptero: (a) sistema completo; (b)
componentes y tipos de uniones [4].

Debido a su amplia gama de aplicaciones en el mundo de la ingenieria, es una técnica muy usada
actualmente.

1.3 Objetivos y estructura del documento

El objetivo de este trabajo es aplicar el andlisis modal experimental a una estructura real sencilla,
en este caso una viga en voladizo, para estimar los pardmetros modales del sistema usando el
peak picking, el mode picking y el método de Ibrahim en el dominio del tiempo (ITD). De esta
manera, este trabajo sirve como un primer acercamiento al andlisis modal experimental para, en un
futuro, usarlo en estructuras mds complejas o con métodos més recientes que han probado ser més
versdtiles.

La estructura del proyecto se compone de 7 capitulos que se resumen a continuacion:

* Capitulo 1: en €l se aborda un repaso histdrico de la teoria de vibraciones y los &mbitos que
engloba en la vida cotidiana. Luego, se explican los origenes del andlisis modal experimental,
su metodologia y sus aplicaciones en el mundo de la ingenierfa.

* Capitulo 2: en este capitulo se profundiza en el anélisis modal, diferenciando entre tedrico y
experimental. Dentro del andlisis modal experimental, se clasifican las técnicas de estimacién
seglin sus caracterfsticas intrinsecas y se presentan dos de los métodos usados, el peak picking
y el mode picking.

 Capitulo 3: dentro de este capitulo se desarrolla el fundamento tedrico del método de Ibrahim
y sus modificaciones para adaptarse a la realidad de la experimentacién. Por dltimo, se
explican el “Modal Confidence Factor” (MCF) y el “Modal Assurance Criterion” (MAC)
como criterios para validar los resultados obtenidos.

* Capitulo 4: en €l se aplica el método de Ibrahim a un modelo tedrico de tres grados de libertad
para comprender el funcionamiento del mismo y cudles de sus pardmetros tienen mayor
influencia en la exactitud de las estimaciones. También se usan los criterios de validacién a
los resultados obtenidos para entender cémo se emplean y si las estimaciones son correctas.
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* Capitulo 5: se presenta la teorfa de vigas de Euler-Bernoulli, y con ella se obtienen analitica-
mente las frecuencias naturales y los modos de vibracién de la viga en voladizo que se ensaya
en el laboratorio.

 Capitulo 6: en este capitulo se estiman los pardmetros modales del sistema ensayado en el la-
boratorio mediante las técnicas desarrolladas en esta memoria. Los resultados experimentales
se corroboran por comparacién directa de los pardmetros modales y aplicando los criterios
de validacidn y, por dltimo, se comparan respecto al modelo tedrico.

» Capitulo 7: se exponen las conclusiones finales tras el trabajo realizado y las propuestas de
mejora y sugerencias para investigaciones futuras.



2 Analisis modal

I andlisis modal surge para describir el comportamiento dindmico de un sistema a partir de
E sus parametros modales, que son las frecuencias naturales, los factores de amortiguamiento
y los modos de vibracién. Con esta informacion se puede conocer como va a actuar el sistema en
cualquier circunstancia. Dichos parametros pueden ser obtenidos de forma tedrica o experimental.

2.1 Analisis modal tedrico

En el anélisis modal tedrico, los pardmetros modales se calculan describiendo el sistema a partir
de sus propiedades de masa, rigidez y amortiguamiento para definir la ecuacién de movimiento
del mismo. Tras obtenerlos, se puede conocer la respuesta del sistema frente a cualquier excitacion.
(Figura 2.1).

Descripcion de Modos de Niveles de
la estructura vibracién respuesta

Figura 2.1 Metodologia del anélisis modal tedrico.

En el caso de tener un sistema con N grados de libertad y amortiguamiento genérico, su ecuacién
de movimiento ante vibracién libre viene dada por:

m& +ct+kx =0, € R"” 2.1
éste puede transformarse en un sistema de primer orden a partir de las siguientes ecuaciones

mx+ct+kxr=0

. . (2.2)
mx —max =0
que puesto en forma matricial se representa como
Ay+ By =0, ycR>»™ (2.3)
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habiendo un total de 2N ecuaciones cuyos términos se definen como

T @ () ) e

para este sistema de ecuaciones diferenciales, las soluciones de prueba serian del tipo
y = et (2.5)

donde 1 € C?™. Al introducir esta expresion en la ecuacién 2.3 se llega al problema de autovalores
y autovectores descrito en la ecuacién 2.6.

(A + B)yp =0 (2.6)

Por la teoria de vibraciones, se conoce que los 2N autovalores obtenidos contienen los IV polos
del sistema y sus conjugados, que vienen definidos por las frecuencias naturales y los factores de
amortiguamiento para cada modo de vibracion del sistema como:

>‘7" = _gr(wn)r + j(wn)r V13- 572 (2.7)

en cuanto a los 2V autovectores, de tamafio 2N x 1, estdn asociados a cada polo r y su conjugado.

La forma que tienen es:
¢1 r> (Ar¢r>
= ’ = (2‘8)
/lpr <¢2,r Pr

siendo ¢, el modo de vibracion r, de tamafio N x 1, del sistema.

Este cdlculo para sistemas con varios grados de libertad puede ser una tarea laboriosa. Sin
embargo, en la realidad, esto puede complicarse mucho mds porque la geometria del sistema a
describir dificulta la definicién de las matrices de masa, amortiguamiento o rigidez, o porque la
cantidad de grados de libertad sea inmensa. Por suerte, gracias al avance de la tecnologia, existen
técnicas como el método de los elementos finitos que permiten discretizar un sistema muy complejo
en pequeiios subdominios mds simples de analizar. Definiendo las propiedades materiales del
sistema, su geometria y las condiciones de contorno en las que se encuentra, se obtienen las matrices
de masa, rigidez y amortiguamiento para cada elemento. Por dltimo, se ensamblan para construir
las matrices del sistema completo y asi conseguir aproximar los pardmetros modales.

2.2 Analisis modal experimental

Esta técnica obtiene los pardmetros modales de un sistema real mediante la realizacién de ensayos
en los que se registre la respuesta de la estructura frente a una excitacion, (figura 2.2). Los ensayos
pueden realizarse en condiciones de operacion de la estructura o en un entorno fuera del rango de
servicio de la estructura donde las condiciones estén bien controladas. Esta segunda opcién suele
ser mas usada, ya que ofrece resultados mds precisos y con mayor informacion.

Propiedades Modos de Modelo
de la respuesta vibracion estructural

Figura 2.2 Metodologia del andlisis modal experimental.
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Para realizar los ensayos son necesarios varios instrumentos: excitadores (shakers), sensores
de fuerza y desplazamiento, velocidad o aceleracion, sistemas de adquisicién de datos, filtros y
analizadores de la sefal. A continuacién, en la figura 2.3 se muestra un esquema de cémo serfa el
montaje de un ensayo experimental.

generador de senal

analizador de senal

:] O excitador (shaker)
O

amplificador de potencia

OO acondicionador

sistema

mecanico de senal

sensor de desplazamiento,

salida

velocidad o aceleracién

Figura 2.3 Elementos del montaje para un ensayo experimental [13].

Una vez tomados los datos del experimento realizado, es necesario usar una o varias de las técnicas
de estimacién de pardmetros modales. Estas pueden clasificarse de varias maneras atendiendo a las
caracterfsticas del método usado. A continuacién, se va a profundizar en algunas de ellas.

2.2.1 Clasificacion de los métodos de estimacion de parametros modales

Métodos SDOF y MDOF

La respuesta dindmica de un sistema puede expresarse como una combinacién de sus modos de
vibracién. Sin embargo, si en un determinado rango de frecuencias se puede suponer que sélo uno de
los modos tiene relevancia, sus pardmetros pueden calcularse por separado. Bajo estas condiciones,
se engloban a los métodos SDOF. Su principal ventaja es su rapidez de cdlculo. Por contra, estdn
sujetos a la restriccién de que sus modos estén bien desacoplados, hecho que rara vez ocurre. Para
estimar con mayor exactitud los pardmetros modales es necesario tener en cuenta varios modos a la
vez. Esta forma de actuar es propia de los métodos MDOF.

Estimaciones locales frente a estimaciones globales

La respuesta impulsiva observada en i debida a la excitacién en j viene descrita como:

al 1 1

At et L

hig(t) = D @i — @ + @l — o, (2.9)
r=1 T T
De esta expresioén pueden obtenerse la siguiente informacion:
* Los polos A, no dependen de la salida ¢ ni de de la entrada j.

* Los coeficientes de los modos, ¢,,., son independientes del lugar donde se excite, j.
* Los factores de participacién modal, aicp jr» NO dependen del punto observado, i.
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Los métodos basados en estos tres principios generan estimaciones globales. En las estimaciones
locales se calculan varios valores de un mismo pardmetro. Esto es una desventaja, ya que es necesario
un tratamiento de los resultados en base al criterio del usuario.

Una entrada o muiltiples entradas

Los métodos que usan varias entradas tienen la capacidad de identificar polos muy préximos o
incluso dobles. Ademads, puede demostrarse que estos métodos permiten hacer estimaciones globales
de los coeficientes de los modos debido a la independencia de los mismos respecto al lugar donde
se excita, j.

Identificacion en el dominio del tiempo o en el dominio de la frecuencia

En el andlisis en el dominio del tiempo se trabaja con las sefiales de entrada y salida registradas
durante una ventana temporal. En cambio, en el dominio de la frecuencia se usan las relaciones
entre las sefiales de entrada y salida en funcién de la frecuencia. Las ventajas de los métodos en el
dominio del tiempo con respecto a la frecuencia se detallan a continuacién:

* Las técnicas de estimacién en el dominio del tiempo suelen estar mejor condicionadas
numéricamente que las usadas en el dominio de la frecuencia. Debido a esto, si los datos
captados incluyen mucho ruido suele ser mejor opcidn aplicar los métodos en el dominio del
tiempo.

 Evitan los errores asociados al procesamiento de las sefiales, como el leakage o el aliasing,
propios de los andlisis en el dominio de la frecuencia.

* Suelen ser mds adecuados cuando la banda de frecuencias de interés es muy grande.

* Son mds adecuados para sistemas con poco amortiguamiento, ya que la amplitud de la
respuesta tarda mds tiempo en atenuarse pudiendo asi usar una gran cantidad de registros. En
el dominio de la frecuencia, los picos de resonancia se generan con pocos puntos debido a
que son muy estrechos dificultando la estimacién. (Figura 2.4).

£ E
(5} o =
2E &
) <
~ Bl =
| Tiefnpo |
(a) (b)

Figura 2.4 Muestreo de datos para sistemas ligeramente amortiguados.

Por contra, presentan los siguientes inconvenientes:

* Cuando los modos fuera de la banda de interés tienen importancia, los métodos en el dominio
del tiempo no pueden considerar sus efectos. En cambio, los métodos de estimacion en el
dominio de la frecuencia si pueden aproximar esta situacion.

* En sistemas muy amortiguados, apenas se disponen de datos ttiles en el dominio de tiempo
por la corta duracién de la respuesta. En el dominio de la frecuencia, la anchura de los picos
de resonancia cubre una amplia parte del espectro, por lo que es preferible usar este tipo de
métodos. (Figura 2.5).
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9

Respuesta
impulsiva
Magnitud

‘Tier‘npo‘ | " TFrecuencia
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Figura 2.5 Muestreo de datos para sistemas muy amortiguados.
2.2.2 Peak picking y mode picking

El peak picking es un método SDOF de estimaciones locales que calcula las frecuencias naturales y
el amortiguamiento de un sistema de forma aproximada, ya que se basa en la hipétesis de que los
modos estdn desacoplados. Para calcular los pardmetros mencionados anteriormente, el método
trabaja con la funcién de respuesta en frecuencia, ya sea en posicién o aceleracion. El procedimiento
es el siguiente.

En primer lugar, las estimaciones de las frecuencias naturales se corresponden con los puntos
donde la funcién de respuesta en frecuencia tiene un maximo. Luego, se calculan los factores de
amortiguamiento utilizando el método del ancho de banda. Este método ofrece buenos resultados
s6lo cuando los modos se encuentran en rangos de frecuencia lejanos, el amortiguamiento del
sistema es pequefio y se dispone de la suficiente resolucion en el dominio de la frecuencia. Si se dan
estas condiciones, el factor de amortiguamiento, &,., para la frecuencia natural identificada, (w,,),.,
puede calcularse segtin [1] como:

2 2
_ Y W 2.10
= Bl 10

siendo wy, y w, las frecuencias por encima y por debajo del valor de (w,,), respectivamente, cuyo
valor de FRF es igual a % FRF en el pico. Para sistemas con poco amortiguamiento, la ecuacién

2.10 puede simplificarse asi.
Wy — W,

&= 2,

Una vez obtenidos la frecuencia natural y el factor de amortiguamiento, los polos del sistema
pueden aproximarse segin la ecuacién 2.12.

@2.11)

A= _§r<wn)r + j<wn)r V13- 57? (2.12)

En la figura 2.6 se representa una grifica que muestra cémo se aplica el peak picking para
identificar las frecuencias naturales.

Para estimar los modos de vibracién se recurre al mode picking. Tiene las mismas caracteristicas
que el peak picking. Es un método SDOF de estimaciones locales en el dominio de la frecuencia,
s6lo se diferencian en los pardmetros modales que calcula cada uno. Para explicar cémo se obtienen
los modos de vibracion con este método, se parte de la expresion tedrica de la matriz de funciones
de respuesta en frecuencia para sistemas con amortiguamiento genérico y N grados de libertad.

1 T

1 1
- = - 2.13
-+ jw a;i(pr ( )

T *
—)\T—i—]waTSOr +(p’f’

N
Hw) =) &,
r=1
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Figura 2.6 Método peak picking.

En el caso de hacer la suposicion de que en un cierto rango de frecuencias sélo tiene importancia
uno de los modos del sistema, la ecuacién anterior se puede simplificar a

1 1 1 1 LR
Hw=p— T 4+ pr—— Ty UR- == 2.14
(w) Y et T T e 3 (2.14)
donde los términos U R y L R son matrices constantes que tienen en cuenta la influencia de los
modos que estdn por encima y por debajo de la banda de frecuencia estudiada, respectivamente.
Para la frecuencia (w,,),., si se desprecian los términos residuales, se puede hacer una estimacién
aproximada del valor de la funcion de respuesta en frecuencia como:

1 1 1 1

ZJ((wn)r) Pir _)\r +](Wn)r Q. (p]'f' i _fr(wn)r ar SO]T

(2.15)

siendo necesario haber estimado previamente los polos del sistema para poder obtener los modos
del mismo.



3 Metodo de Ibrahim

I método de Ibrahim para el dominio del tiempo (ITD) [3, 6, 8, 7, 9] es un método MDOF que
E permite estimar con caracter global los pardmetros modales de un sistema. Calcula los polos
y los modos complejos en un tnico anélisis a partir de la resolucién de un problema de autovalores
y autovectores. Para ello, se pueden usar varios registros de la respuesta del sistema ensayado a la
vez, ya sea en desplazamiento, velocidad o aceleracion, sin que sea necesario conocer la fuerza de
excitacion. Esto se debe a que el ITD utiliza datos tomados de la respuesta en vibracién libre, por lo
que se usan los registros en instantes posteriores a la excitacién para que su influencia se reduzca.

3.1 Marco teorico

Suponiendo un sistema lineal con N grados de libertad y amortiguamiento genérico, para obtener
su respuesta en vibracion libre es necesario conocer los polos y los modos del mismo. En las
ecuaciones de la 2.1 a la 2.8 se detalla la forma de hacerlo. Una vez obtenidos los autovectores, el
sistema puede diagonalizarse y resolverse para cada una de las coordenadas modales.

=Nz, =0 —  2.(t) = 2z.(00eM, (r=1,2,..,2N) (3.1

La respuesta en vibracion libre del sistema puede escribirse en las coordenadas originales desha-
ciendo el cambio de coordenadas de la siguiente forma:

2N 2N 2N
x(t) - ZwQTZr(t) - Zw%"zr(o)e)\rt - Z Zre)\rt (3.2)
r=1 r=1 r=1

donde 1), es el vector que contiene las NV filas de la mitad inferior del autovector r, es decir, el
modo r. Por tanto, z,. sigue siendo un modo de vibracion, ya que se ha construido multiplicando
1)y, por una constante, z,(0), que es el valor inicial de la coordenada modal.

Haciendo uso de la expresion anterior, la respuesta del sistema puede expresarse como

et ehiteny

[z(ty) . z(ton)]=1[z1 - 2n] : : (3.3)
eM2Nt1  olantan

que escribiéndose de forma compacta queda como

X =ZA (3.4)

1
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repitiendo la ecuacion 3.3 para respuestas desfasadas un tiempo Ats, (otras variaciones temporales
At y Atq se usaran mas adelante), respecto a las de la ecuacion 3.3 se obtiene

[2(ty + Atg) ... z(lay + Alg) ] =
AltitAts)  Ai(tan+Ats) 3.5)
(21 . Zon] : :
6)\21\7 (t1+At3) e/\ZN(t2N+At3)
que es igual a
M by (3.6)
[zle)‘lAt3 . zgnel2NAL ] : :

er2Ntl  olantan

que puede expresarse de forma andloga a la ecuacién 3.4 como
X =ZA (3.7)

combinando las ecuaciones 3.4y 3.7 se llega a

X Z
3)- [
que puede resumirse en la ecuacién 3.9.
x = OA (3.9
A continuacidn, si se aplica una variacién temporal At¢; a la ecuacién 3.8 se obtiene la siguiente
matriz
que también puede expresarse asi
el eMtan G.11)
[ 2 eMA g yeten At }
zlekl(At3+At1) Z2Ne>‘1(At3+At1) Dt 6/\2]-W2N
o de forma compacta como en la ecuacién 3.12.
Z .
X = 5 A =0OA (3.12)

Eliminando A de las ecuaciones 3.9 y 3.12 se obtiene el problema de autovalores y autovectores
siguiente.
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X O=0 = xx0.=6, — xx 10, =0, (3.13)

De esta ecuacion se observa que las primeras N componentes de cada autovector 7, 8,., coinciden
con el modo r, z,, del sistema. Sin embargo, los polos del sistema, A, no se corresponden con los

autovalores obtenidos, e’ 21, por lo que es necesario hacer la operacién descrita en la ecuacién
3.14.
In(a )
a, =eMAl o\ = A(tr) =a, + jb, (3.14)
1

A partir de los polos, se pueden obtener las frecuencias naturales, (w,,),, y los factores de
amortiguamiento &, para cada modo r como sigue

ar = _(wn)r gr (315)

b, = (wd)r = (wn)r V31— 572' (3.16)
(W), = /a2 + b2 3.17)

£o=——r (3.18)

siendo a,. la parte real del polo y b, la parte imaginaria.

Es importante mencionar que los instantes ¢;,t,,...,t5 5 DO tienen por qué estar equidistanciados
y no hay restricciones respecto a un minimo o maximo espaciado entre ellos. No obstante, siendo
pragmadticos a la hora de aplicar el método, es conveniente que los registros estén equiespaciados y
que se encuentren en el tramo inicial de la respuesta debido a que se estd trabajando con la vibracién
libre del sistema. El tinico pardmetro cuyo valor debe obedecer una ecuacioén, de acuerdo con [7],

es Atq, al que se le impone que:

1
9 3.19

siendo f,,,. €l valor de la maxima frecuencia natural expresada en Hertzios que el método puede
identificar correctamente. Debido a esto, es recomendable que la frecuencia de adquisicion de datos
del ensayo, f,, sea lo mds grande posible para asi poder hacer un anélisis en un amplio rango de
frecuencias.

El método descrito hasta ahora estd basado en la respuesta ante vibracion libre del sistema en una
situacién ideal. Sin embargo, en la préctica, estas condiciones no se cumplen debido a que:

* Las medidas recogidas estdn contaminadas por el ruido.
* El nimero de modos que contribuyen a la respuesta se desconoce.
* El nimero de sensores usados no es igual al nimero de modos desconocidos.

dificultando la estimacién de los pardmetros modales del sistema. Para mejorar la precisién de la
estimacion obtenida, se aplican las siguientes modificaciones al método original.

3.1.1 Solucion del problema de autovalores en el sentido de minimos cuadrados

Con el objetivo de atenuar los efectos del ruido sobre la matriz xx !, las matrices x y X se
construyen incluyendo registros de la respuesta en mas de 2NV instantes de tiempo, de forma que
tienen un tamafio 2N x 2l, siendo 2! la cantidad de instantes escogidos cuyo valor es recomendable
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que sea mucho mayor que 2/N. Esto hace que ni x ni A sean matrices cuadradas, quedando un
sistema de ecuaciones sobredeterminado. Para evitarlo, se usa la transpuesta de x para generar un
nuevo problema de autovalores y autovectores resuelto en el sentido de minimos cuadrados:

xx!T = ©AxT

ol =0aT (RxT) (xxT) 7" 0, = f,eMA0 (3.20)

3.1.2 Sobredimensionado del modelo

En la practica, las medidas registradas contienen ruido de forma que la respuesta ante vibracion
libre del sistema en el que se excitan N modos se expresa segin la ecuacion 3.21 [3].

2N
=S5 4l e
r=1

En el caso de que la respuesta contenga mds medidas que los grados de libertad que estdn siendo
excitados, ésta puede escribirse como sigue

Zz et 4 Z R,eMt (3.22)

r=2N+1

siendo M el nimero de grados de libertad permitidos. Al proceder de esta manera, se ha compro-
bado experimentalmente que los resultados mejoran en gran medida, esto sucede debido a que
la informacién del ruido fuga hacia los M — N grados de libertad extra en vez de afectar a los
grados de libertad reales del sistema. Ademads, al construir un modelo con M grados de libertad
computacionales, desaparece la necesidad de conocer con exactitud el nimero de grados de libertad,
N, del sistema.

3.1.3 Generacion de pseudoestaciones

Al explicar el fundamento teérico del método se ha supuesto que la cantidad de medidas disponibles
era igual al nimero de grados de libertad del sistema, sin embargo, lo més probable es que el nimero
de sensores, p, sea menor que el nimero de modos del sistema, /V. La respuesta del sistema en este
caso podria definirse como un vector con p filas con la ecuacién 3.23 [3].

t)=> zeMt, N>p (3.23)
Para poder identificar los NV modos de vibracién sin tener que aumentar la cantidad de sensores
del ensayo, se crean “pseudoestaciones” o estaciones ficticias generadas a partir de las respuestas

medidas con los p sensores. Para ello, cada pseudoestacion se retrasa un intervalo At, respecto a la
respuesta real captada.

2N 2N
t + At2 Z 2, 6 r(t+At2) — Z zre)\rAt2€)\'rt — Z ZTG)\Tt (324)
r=1 r=1

Uniendo estas medidas ficticias y las originales, se tiene una respuesta con un total de 2p medidas,
p medidas reales y p pseudomedidas.

[w(tﬁ(ti@)] - QEN: [i] ! (325)
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Este proceso puede repetirse incluyendo nuevas pseudoestaciones con sus respectivos desfases
temporales At 5, hasta conseguir que la respuesta tenga N medidas, p reales y k - p ficticias. El
resultado seria el siguiente:

x(t) Zy
x(t + Aty ) ON | Zr1
e(t+ Qb)) | =3 | Za| e (3.26)
r=1 :
|z (t + Atyy) | Zr k]

En esta memoria, en el vector At, se agrupardn todos los desfases Aty j; seleccionados para
generar pseudoestaciones. Los valores de At, han de escogerse de tal forma que no sean ni muy
grandes ni muy pequeios, ya que, en el primer caso, se estarian incluyendo registros con mas
ruido debido a que se trabaja con la respuesta ante vibracidn libre, y en el segundo, al haber poco
espaciado temporal entre estaciones, la matriz xx” podria ser singular, lo que impide resolver
el problema de autovalores con exactitud. Este hecho también ocurre cuando alguno de los At, j,
coincide con At y/o At;.

3.2 Validacion de resultados

Para identificar qué polos y modos estimados del ensayo describen el comportamiento dindmico de
la estructura se van a usar dos criterios: el “Modal Confidence Factor”, MCF, y el “Modal Assurance
Criterion”, MAC.

3.2.1 Modal Confidence Factor

Previamente, se ha explicado que al usar un modelo con M grados de libertad permitidos para
identificar N grados de libertad reales, siendo M mayor que IV, se consiguen resultados mads
precisos. Para diferenciar los /N modos de la estructura de los M — N modos asociados al ruido,
se calcula el MCF [3, 6]. Este coeficiente de validacion de resultados es exclusivo del método de
Ibrahim.

Si z;, es el valor del desplazamiento modal r en el punto de medida ¢ y Z;,. es el mismo pero
desfasado un tiempo AT, de acuerdo con la teoria de vibraciones para sistemas lineales se espera
que el valor de z;, sea:

(gir)e:tpected = ZireATAT (3.27)

el MCF compara este valor esperado con el desplazamiento modal r en el punto de medida ¢ de la
pseudoestacion k-€sima con Aty = A7. Se define como:

Zir
err AT

— , Sz, < <2ir)ezpected
T

(MCF),, = (3.28)
ZiT€>\T‘ AT

, Sl Zir > (Zir)eazpected

su valor puede estar entre 0 y 1. Cuando el MCF es 1, significa que el autovector identificado se
corresponde con un modo de vibracion estructural. En esta tesis se calcula un tnico MCF', para
cada modo r tomandose el del punto de medida cuyo MCF tenga el valor més pequefio de entre
todas las pseudoestaciones generadas. El MCF s6lo puede aplicarse cuando se incluya al menos
una pseudoestacion al ITD.
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3.2.2 Modal Assurance Criterion

Una de las herramientas mds usadas para comparar los modos de vibracién obtenidos mediante
diferentes métodos de estimacion o datos de distintos ensayos es el MAC [2, 10]. Este factor es
un valor escalar entre 0 y 1 que da informacidn acerca de la consistencia o linealidad entre los
vectores a comparar. En el caso general en el que se comparen los modos r y ¢, con parte compleja,
obtenidos de una forma A y otra B, el MAC se calcula como sigue:

(v {wshi|
{ayF{vats) (v} {vE})

siendo el valor del MAC cercano a 0 cuando no hay similitud entre los vectores, y préximo a 1
cuando existe correlacion entre ellos. Los valores obtenidos se ensamblan en la matriz MAC, aunque
los resultados suelen representarse en gréificas 2D o 3D para que la informacién sea més visual y
ocupe menos espacio.

MAC(r,q) = (3.29)

Los resultados de la matriz MAC deben interpretarse correctamente para no hacer un mal uso
de los mismos. Este coeficiente no estd pensado como un criterio para asegurar la validez de los
resultados o hacer la comprobacién de ortogonalidad de los modos de vibracién con respecto a la
matriz de masa del sistema en primera instancia. Para poder hacerlo, antes es necesario saber las
razones por las que el MAC toma valores cercanos a 0 o 1.

Cuando el MAC es muy préximo a 0, puede deberse a:

* Cambios en las propiedades de masa, rigidez y amortiguamiento del sistema durante el ensayo,
es decir, el sistema no es estacionario.

* Comportamiento no lineal del sistema.

* Presencia de ruido en la forma modal de referencia.

» Estimacion errénea de los pardmetros modales.

* Los modos de vibracién son linealmente independientes.

En el caso de que se puedan descartar los cuatro primeros motivos, el MAC puede interpretarse
como una comprobacién de la ortogonalidad de las formas modales comparadas.

Por otra parte, si el MAC es cercano a 1, puede significar que:

* No se disponen de las suficientes estaciones reales para poder distinguir dos formas modales
independientes.

* Los modos estimados son causados por una excitacion distinta a la deseada. Esto puede
suceder, por ejemplo, cuando en la estructura existen partes rotatorias desequilibradas durante
la medicidn.

* Larelacién lineal entre los modos es debida a que ambos presentan ruido.

* Los vectores modales comparados representan el mismo modo de vibracidn.

Cuando se pueda asegurar que los tres primeros motivos no han afectado en el valor del MAC,
éste sirve para validar que existe una relacién en los modos de vibracién obtenidos.



4 Aplicacion ITD a modelo analitico

ara tener una primera toma de contacto con el método y comprobar el correcto funcionamiento
del cédigo desarrollado, se va a analizar un modelo tedrico de tres grados de libertad. Todo
este proceso va a realizarse en MATLAB® .

4.1 Sistema a estudiar

El modelo a estudiar estd compuesto por tres conjuntos masa-muelle-amortiguador y viene repre-
sentado en la figura 4.1.

p k 1 fi?Q :"63 k‘-4
—AAAA— —AAAA—
g ma ms
| I | I 7
Cq Co Ca Cyq

Figura 4.1 Esquema del modelo de tres grados de libertad [13].

Las propiedades del sistema indicadas en la figura 4.1 tienen los siguientes valores.

my = 1200 kg, mq = ms = 2400 kg;
ky = ky = 250000 N/m, ky = kg = 100000 N/m;
cp = ¢y = 2500 N/(m/s), ¢3=-cq4=3500N/(m/s).

Las matrices de masa, amortiguamiento y rigidez del sistema, en funcién de los pardmetros del

mismo, son:
m1 O 0 kl + k2 —kQ 0
m=|0 my 0 ]|; k= —ky kgt ks —ks
0 O m3 0 —k3 ]6'3 + ]6'4
“4.1)
Cq + Co —Cy O
c= —C9 Cy +c3 —cC3
0 —C3 Cg + Cy

17
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y al sustituir los términos quedan como:

1200 0 0 350-10% —100- 103 0
m=| 0 2400 0 |; k=|[-100-10> 200-10>° —100-10°
0 0 2400 0 —100-10%  350-103
(4.2)
5000 —2500 0
c=|-2500 3000 —3500
0  —3500 7000

particularizando las ecuaciones 2.2, 2.3 y 2.4 para estas matrices y resolviendo el problema de
autovalores y autovectores descrito por la ecuacion 2.6, se obtienen los siguientes polos y modos:

0,7821 + 0,01718;
Ao =—05233 F7,118f; @10 = | 2,235+0,2417j
1

—0,2468 + 0,1095;
X34 = —1,850 F 12,6015; ¢34 = | —0,411 + 0,05963; (4.3)
1

13,468 £ 10,5967
As g = —2,418 F17,3377; w56 = | —3,242F 1,277j
1

Estos valores tedricos se comparardn més adelante con los estimados a partir del método de
Ibrahim en dos escenarios distintos, en uno la respuesta estara libre de perturbaciones y en el otro
se contaminard con ruido. Para obtener la respuesta del sistema ante vibracion libre, en ambos casos
se va a usar la subrutina ode45 de MATLAB® para que integre numéricamente las ecuaciones de
movimiento del sistema para unas condiciones iniciales impuestas. Se va a registrar la respuesta
durante 4 s con una frecuencia de adquisicién de datos de 1000 Hz, es decir, las medidas estdn
espaciadas 0,001 s. La subrutina ode45 se ha configurado con una tolerancia de 10~3 para el error
relativo y una de 10~ para el error absoluto entre iteraciones.

4.2 Identificacion de los parametros modales sin ruido

La respuesta del sistema mostrado en la figura 4.1, para unas condiciones iniciales en posicion de
21(0) =0,4m, x5(0) = —0,3my x3(0) = —0,2 m, y nulas en velocidad y aceleracién por partir
del reposo, se muestra en la figura 4.2.

Como se esta estudiando un modelo analitico de tres grados de libertad sin ruido, por la teoria
explicada anteriormente en el apartado 3.1, se sabe que construyendo las matrices x y x con un
tamafio 6 X 6 cada una, pueden obtenerse los polos y los modos del sistema. Para ello, los pardmetros
del método de Ibrahim elegidos se resumen en la tabla 4.1.

Bajo estas condiciones, el intervalo de respuesta usado va desde los 0,04 s hasta los 0,66 s. A
continuacion, en la figura 4.3 se incluye una gréfica ampliada de la respuesta ante vibracion libre,
donde se encuentran marcados los registros que componen las matrices x y x para visualizar cémo
se seleccionan los puntos de la sefial.
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Posicién (m)

7‘T1(t)
*wz(t)
K\ z3(t)
, e
Ww
_04 | | | | | | | |
0 0.5 1 15 2 2.5 3 3.5 4

Tiempo (s)

Figura 4.2 Respuesta tedrica ante vibracién libre del sistema.

Tabla 4.1 Pardametros seleccionados del ITD para la respuesta teérica.

Pardmetro Simbolo Valor

Numero de estaciones reales P 3

Desfases temporales de las
pseudoestaciones Aty [~]

Instante del primer registro 1o 0,04 s

Numero de columnas de x vy X ncol 6
Espaciado entre registros h 0,08 s
Desfase entre X y X Aty 0,11s
Desfase entre x y X Aty 0,11s
Instante del dltimo registro tr 0,66 s

Posicién (m)

I
'S

\ X 0.04 —z1(t)
|\ Yo20765 —x9(t)

X 0.
Y 0.225052; z3(t)

o
w

o
N
T

oS
o
T

o
T

A~ X 0.26 T
\/ Y -0.093191
X0.12 o
Y -0.188558 X015  /[xo023
A Y -0.31095 | |y -0.231877

N

0.4 I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Tiempo (s)

.
o
o
T
x

I
o

o
w
\\
\

Figura 4.3 Registros seleccionados de la respuesta ante vibracion libre.



20

Capitulo 4. Aplicacion ITD a modelo analitico

Los puntos marcados con un circulo conforman la matriz X y los marcados con un asterisco

X. Si se observa la figura 4.3, hay dos marcadores que siempre se solapan, el cuadrado y la cruz.
Esto se debe a que, al tener los pardmetros At; y Ats el mismo valor, las medidas seleccionadas
para construir las matrices X y X coinciden, y en consecuencia, dichas matrices son exactamente
iguales. La eleccién de At; = At; se va a hacer en todos los andlisis del método de Ibrahim en
esta memoria para simplificar la aplicacién del mismo, aunque el cédigo desarrollado permite
diferenciar entre ambos pardmetros si asi se desea.

Al aplicar el procedimiento del ITD a la respuesta sin ruido con los pardmetros definidos en la
tabla 4.1 se obtienen los siguientes modos y polos del sistema.

0,7811 £ 0,01451;
Mo = 05238 FT,118f; @10 = | 2,235+ 0,2423;
1

—0,2594 + 0,10675
X34 = —1847F12,5995; 3,4 = | —0,409 + 0,05893; 4.4)
1

13,469 + 10,6237
Asg = —2A4118F 17,3405; 5= | —3,243 7 1,282j
1

A simple vista, si se comparan estos resultados con los obtenidos teéricamente, cuyos valores
aparecen en la expresion 4.3, se puede comprobar que la estimacién de los pardmetros modales ha
sido muy exacta. No obstante, como ya se ha comentado, la presencia de ruido durante la captacién
de los datos hace imposible obtener registros como los de la figura 4.2. Por ello, se ha de estudiar
como se comporta el método frente a estas perturbaciones.

4.3 Identificacion de los parametros modales con ruido

Para generar un ruido aleatorio se han usado las funciones randn y rng de MATLAB® . La primera de
ellas permite generar una matriz de nimeros aleatorios que sigue una distribucién normal estdndar,
y la segunda controla cémo la funcién randn genera dicha secuencia de nimeros aleatorios. Al
configurar la funcién rng con la opcién ‘default’, se consigue contaminar la respuesta del sistema
usando siempre el mismo ruido aleatorio para asi poder comparar realmente los resultados de aplicar
el ITD variando los pardmetros elegidos por el operador.

La respuesta con ruido se ha obtenido sumando para cada instante la respuesta analitica de la
figura 4.2 y la secuencia de ntimeros aleatorios generada por la funcién randn. El ruido incluido
tiene una media de 0 mm y una desviacion tipica de 3,3 mm, de forma que su amplitud sea 10 mm
como maximo en el 99,7 % de los casos. La respuesta “experimental” calculada se muestra en la
figura 4.4.
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—x1(t)
——xa(t)
z5(t)
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Figura 4.4 Respuesta ante vibracion libre del sistema contaminada con un ruido aleatorio de amplitud
mdaxima de 10 mm.

Si se aplica el ITD a la respuesta con ruido con los mismos pardmetros de la tabla 4.1, los
pardmetros modales que se obtienen son:

0,7814 % 0,07922;
Ao = —0,5824 F 7,50255; 10 = | 1,9519 + 3,2773j
1

0,5144 + 6,6466
Ao = —2,651 F17,171; 56 = | —0,6996 F 1,0804 (4.5)
1

el segundo par de polos y modos conjugados estimado no se muestra en la expresion 4.5 ya que el
método ni siquiera lo ha identificado correctamente.

Es evidente que la estimacion no ha tenido éxito debido al ruido afiadido. Por tanto, es necesario
cambiar los pardmetros del I'TD para obtener unos resultados mas exactos. Para ello, se va a hacer
un estudio sobre cdmo varian las frecuencias naturales identificadas al cambiar los pardmetros que
intervienen en el método de Ibrahim, aplicando las modificaciones explicadas en los apartados
3.1.1,3.1.2y 3.1.3.

En todos los andlisis hechos, el instante del primer registro usado ha sido 0,04 s, se ha establecido
un MCF de corte de 0,9, cuando pueda usarse, y se han usado los registros en posicion de las tres
masas puntuales con ruido, es decir, un total de tres medidas reales. En cada andlisis realizado s6lo
se ha variado uno de los pardmetros del método, manteniendo el resto constante, para observar
c6mo influye su valor en la estimacion.

En primer lugar, se va a estudiar la influencia del nimero de columnas de las matrices x y X,
ncol. Al aumentar este parametro, los efectos del ruido en la estimacién deben disminuir segtin lo
visto en el apartado 3.1.1. Al aplicar el ITD fijando los pardmetros segtin los valores de la tabla 4.2
y variando ncol desde 6 hasta 1600, se obtiene la figura 4.5.

Observando la gréfica se puede comprobar que cuando se usan pocos registros, las estimaciones
de las frecuencias naturales se alejan mucho de los valores tedricos. Sin embargo, a medida que el
nimero de columnas de x y x se incrementa, el método converge hacia las frecuencias naturales
tedricas. En este caso, para un ncol superior a 250, las frecuencias calculadas se estabilizan en
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Tabla4.2 Pardametros seleccionados del ITD para el andlisis de la respuesta con ruido variando

ncol.
Parametro Simbolo Valor
Desfases temporales de las At (]
pseudoestaciones 2
Nuimero de columnas de x y X ncol 6 - 1600
Espaciado entre registros h 0,002 s
Desfase entre X y X Ats 0,11s
Desfase entre x y X Aty 0,11s
Instante del dltimo registro tr 0,27s + 3,458 s
5r ; -
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Figura 4.5 Frecuencias naturales estimadas al variar ncol.

torno al valor correcto. Otra informacion que puede extraerse de la figura 4.5 es que si se toman
registros muy alejados respecto al inicio de la vibracién libre, la estimacion empeora. Este efecto
se visualiza mejor al representar el error relativo en porcentaje entre los valores calculados y los
tedricos frente a ncol, como se muestra en la figura 4.6.

Se puede ver que a partir de un cierto valor, en este caso ncol ~800, el error en las estimaciones
de todas las frecuencias naturales aumenta, alejandose el valor estimado del teérico. Por tanto,
se concluye que ncol debe tener un valor mucho mayor que 2N, pero teniendo en cuenta que el
intervalo de respuesta usado sea préximo al inicio de la vibracion libre. Un valor de referencia en
este ejemplo puede ser ncol ~ 500.

En el segundo barrido se va a analizar la influencia de At; variando su valor desde 0,001 s hasta
0,6 s en intervalos de 0,001 s. Los valores elegidos para el resto de pardmetros se detallan en la
tabla 4.3, y el resultado en la figura 4.7.
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Figura 4.6 Error relativo de las frecuencias naturales estimadas con respecto a las tedricas al variar
ncol.

Tabla 4.3 Parametros seleccionados del ITD para el andlisis de la respuesta con ruido variando

At;.
Pardmetro Simbolo Valor
Desfases temporales de las
pseudoestaciones
Numero de columnas de x y X ncol 420
Espaciado entre registros h 0,002 s
Desfase entre X y X At 0,001 s = 0,6s
Desfase entre x y X Aty 0,001 s +0,6
Instante del dltimo registro iy 0,88 s = 2,078 s
5 —
Frecuencias naturales
asociadas
N Wn,1
= AT n,2
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Figura 4.7 Frecuencias naturales estimadas al variar At; y Ats.
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Para valores inferiores a 0,05 s, no todas las frecuencias naturales estimadas se aproximan a las
tedricas, sobre todo en el caso de la segunda frecuencia natural. En el entorno entre los 0,1 s y los
0,16 s, se estabilizan los resultados, dando estimaciones buenas. A partir de los 0,17 s, la tercera
frecuencia natural estimada crece un poco y luego disminuye rapidamente, distancidndose del valor
tedrico. Este hecho ocurre de forma similar tanto para la segunda como para la primera frecuencia
natural alrededor de los 0,22 s y los 0,43 s, respectivamente.

El efecto descrito se debe a la condicidon regida por la ecuacion 3.19 que afectaba a At,. Cal-
culando los At; maximos para cada frecuencia natural tedrica usando esa ecuacion, se tiene que
no deben superar los 0,44, 0,25 y 0,18 s para conseguir estimar la primera, segunda y tercera fre-
cuencia, respectivamente. Aproximadamente, estos valores tedricos coinciden con los identificados
visualmente en la figura 4.7. Para seleccionar un valor adecuado de At; se va a representar en la
figura 4.8 una grafica con el error relativo entre frecuencias estimadas y tedricas en la zona de
interés.

N
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N

[Frecuencias naturales| :
asociadas
° Wn1
Wn,2

® Wn3

-
o
o
T

102+

Error relativo entre frecuencias
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Figura 4.8 Error relativo de las frecuencias naturales estimadas con respecto a las tedricas al variar
Atl y Atg

Observando la gréfica anterior puede comprobarse que los valores 6ptimos de At; oscilan entre
0,11 sy 0,16 s, ya que los errores son menores al 1 % para todas las frecuencias naturales. Para
futuros andlisis se tomard un At préximo a los 0,135 s. La conclusién mds importante de estos
barridos es que At; ha de ser algo inferior a # siendo f,,,, la maxima frecuencia natural que

max
se desea abarcar con el método, ya que de lo contrario serd imposible identificarla.

Ahora, se pasa a determinar el efecto que tiene el espaciado temporal entre los registros usados,
h, en el rango de 0,001 s hasta 0,007 s en intervalos de 0,001 s. En este andlisis hay un rango de
valores mds pequeio porque cuanto mds grande sea h, se tiene que disminuir ncol o tomar registros
mds alejados del instante inicial, lo que se ha comprobado que empeora los resultados obtenidos.
Los valores tomados para el resto de pardmetros se detallan en la tabla 4.4, y los resultados en la
figura 4.9.

En este caso, salvo para h =0,001 donde el error de la segunda frecuencia natural es mayor al
10 %, el error de las estimaciones es inferior al 0,7 % para el resto de valores de h, por lo que
parece no influir en gran medida en el método. Por tanto, para poder aumentar el pardmetro ncol lo
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Tabla 4.4 Parametros seleccionados del ITD para el andlisis de la respuesta con ruido variando h.

Parametro Simbolo Valor
Desfases temporales de las At I~
pseudoestaciones 2
Numero de columnas de x y X ncol 420
Espaciado entre registros h 0,001 s = 0,007 s
Desfase entre X y X At 0,138 s
Desfase entre x y X Aty 0,138 s
Instante del dltimo registro iy 0,735s +3,249s
102¢
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Figura 4.9 Error relativo de las frecuencias naturales estimadas con respecto a las tedricas al variar
h.

maximo posible para atenuar el efecto del ruido, el valor de h se elegird en torno a dos veces la
resolucién del sistema de adquisicion de datos, para este ejemplo 0,002 s.

Por dltimo, se va a estudiar la influencia de la cantidad de pseudoestaciones y el valor de
sus desfases temporales. Para ello, se ird variando el valor Aty ; de la pseudoestacion k-€sima,
manteniendo constantes el del resto de pseudoestaciones que se definan. Primero, se va a usar
s6lo una pseudoestacion cuyo Aty ; varfa entre 0,01 s 'y 0,5 s en intervalos de 0,001 s. El resto de
parametros se reflejan en la tabla 4.5 y en la figura 4.10 se representa el valor estimado para cada
frecuencia natural frente a Aty ;.

Se puede ver que hay dos zonas, entre 0,17 s y 0,25 s y a partir de los 0,42 s hasta 0,5 s, donde
las frecuencias estimadas asociadas al segundo par de polos del sistema fugan hacia el valor de la
tercera frecuencia natural tedrica. Esto ocurre porque al introducir pseudomedidas el criterio del
MCEF es aplicable, descartando as{ los polos y modos calculados por el ITD que no superan el valor
del MCF ... Para el resto de casos, no se aprecian diferencias a simple vista entre el valor de las
frecuencias estimadas.

Para hacer un estudio méds profundo, van a representarse los errores relativos para aquellos valores
de Aty que estiman los tres polos del sistema y sus conjugados correctamente, segtin el criterio
del MCF. En la figura 4.11 se muestran los resultados.

Se puede ver que en todos los casos que cumplen la restriccion anterior, los errores son inferiores



26

Capitulo 4. Aplicacion ITD a modelo analitico

Tabla 4.5 Parametros seleccionados del ITD para el andlisis de la respuesta con ruido variando

Atg ; usando una pseudoestacion.

Pardmetro Simbolo Valor
Desfases temporz.lles de las At, [ 0.001s=05s ]
pseudoestaciones
Numero de medidas ficticias k-p 3
Numero de columnas de x y X ncol 420
Espaciado entre registros h 0,002 s
Desfase entre X y X Aty 0,138 s
Desfase entre x y X Aty 0,138 s
Instante del dltimo registro tr 1,164 s + 1,654 s
MCF de corte MCF .+ 0,9
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Figura 4.10 Frecuencias naturales estimadas al variar At, ; usando una pseudoestacion.
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Figura 4.11 Error relativo en tanto por ciento de las frecuencias naturales estimadas con respecto a

las tedricas al variar At, ; usando una pseudoestacion.
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al 0,6 % para las tres frecuencias naturales estimadas. Por tanto, es cierto que la inclusién de
pseudomedidas junto con el uso del MCF mejora la estimacion de los parametros modales. Para
seguir estudiando este efecto, se va a realizar el mismo barrido de At, ; incluyendo 2, 3 y hasta 4
pseudoestaciones, siendo Aty 5 = 0,017 s, Aty 5 = 0,029 s y Aty 4 = 0,041 s. Los resultados para
estos tres andlisis se muestran en las figuras 4.12, 4.13 y 4.14 respectivamente.
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Figura 4.12 Error relativo en tanto por ciento de las frecuencias naturales estimadas con respecto a
las tedricas al variar Aty ; usando dos pseudoestaciones.
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Figura 4.13 Error relativo en tanto por ciento de las frecuencias naturales estimadas con respecto a
las tedricas al variar Aty ; usando tres pseudoestaciones.

Teniendo en cuenta las tres graficas se observa que, conforme aumenta el nimero de pseudoesta-
ciones, los errores cometidos en la estimacién de la segunda frecuencia natural, que son los més
altos, se estabilizan en torno a una banda de error, de entre €l 0,4 % y el 0,1 % en el caso de usar
cuatro pseudoestaciones. Para la primera y la tercera frecuencia natural los errores son inferiores al
0,1 %. Otro hecho a destacar es que al crear mas pseudoestaciones hay menos puntos dibujados, es
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Figura 4.14 Error relativo en tanto por ciento de las frecuencias naturales estimadas con respecto a
las tedricas al variar Aty ; usando cuatro pseudoestaciones.

decir, el criterio del MCF elimina ciertos valores de Aty ; que no consiguen estimar todos los polos
del sistema. Este efecto se aprecia claramente en la figura 4.14 para la regién entre 0,2 s y 0,23 s.

Por tanto, se ha decidido que los desfases temporales de las pseudoestaciones sean pequefios para
asf evitar cruzar por estas zonas e incluir registros con menor proporcion de ruido. De forma general
At, se construird como un vector de nimeros primos multiplicado por la resolucién del sistema
de adquisicién de datos, en este caso 0,001 s. Para este ejemplo, At, = 0,001 s -[17 29 41 53]
cuando haya un total de cuatro pseudoestaciones.

4.4 Analisis de los resultados

En este apartado, se comparan los pardmetros modales obtenidos en presencia de ruido con los
resultados tedricos, para cinco casos distintos. Para ello, se calcula el error relativo entre los polos y
modos estimados con los tedricos de la siguiente forma:

— |)‘teo| B |>‘est| : o= ||‘Pteo” B ||Soest|| (46)
|)‘teo| H‘Pteo”

También, se detallan los valores del MCF y del MAC para cada caso estudiado. Los pardmetros
del ITD seleccionados se recogen en la tabla 4.6. Los resultados obtenidos para los 5 casos se
detallan en las tablas 4.7 y 4.8 y en las figuras 4.15, 4.16, 4.17, 4.18 y 4.19.

Observando los valores recogidos en la tabla 4.7 se comprueba que para todos los andlisis realiza-
dos la estimacién de los polos puede considerarse correcta, aunque al introducir las pseudoestaciones
parece mejorar. Los valores del MCF también son superiores a 0,95 en todos los casos a los que
puede aplicarse, por lo que se puede afirmar que los modos calculados se corresponden con modos
de vibracidn estructural. Es destacable que, a medida que se generan mds pseudoestaciones, el MCF
disminuye.

Respecto a los errores relativos recogidos en la tabla 4.8, en el caso de los polos siempre son
inferiores al 0,5 %, por lo que el método consigue resultados muy satisfactorios. En cuanto a los
modos de vibracidn, el primero y el segundo se calculan con errores inferiores al 0,7 % para cualquier
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Tabla 4.6 Parametros seleccionados del ITD para el analisis de la respuesta con ruido variando la

cantidad de pseudoestaciones.

Pardmetro Simbolo Valor
Numero de medidas reales P 3
Desfases temporgles de las At, 0,017 0,029 0,041 0,053] s
pseudoestaciones
Nuamero de medidas ficticias k-p [036912]
Instante del primer registro 1o 0,04 s
Numero de columnas de x y X ncol 420
Espaciado entre registros h 0,002 s
Desfase entre X y X Ats 0,138 s
Desfase entre x y X Aty 0,138 s
Instante del dltimo registro tr 1,154 s =~ 1,207 s
MCEF de corte MCF, . 0,9

Tabla 4.7 Pares de polos y MCF obtenidos para la respuesta con ruido variando la cantidad de

pseudoestaciones.
Par de polos y MCF
Analisis Modo 1 Modo 2 Modo 3
Teérico —0,5233 F 7,1185 —1,850 F 12,6015 —2,418 F 17,3375
Sin pseudo- —0,5422 F 7,11445 —1,8957 F 12,62235 —2,4301 F 17,30425
estaciones

1

1

1

1 pseudoesta-
cién

—0,5348 F 7,119j
0,9887

—1,8497 F 12,6325
0,9816

—2,439 F 17,3254
0,9889

2 pseudoesta-
ciones

—0,533 F 7,1205
0,9885

—1,8444 ¥ 12,6385
0,9758

—2,4381 7 17,33155
0,990

3 pseudoesta-
ciones

—0,536 F 7,1206
0,0878

—1,838 F 12,640/
0,9716

—2,431 ¥ 17,3336,
0,813

4 pseudoesta-
ciones

—0,5365 ¥ 7,1191j
0,9857

—1,8368 F 12,6491
0,9687

—2,4234 F 17,3393
0,961

andlisis, sin embargo, el tercero empeora su estimacién a medida que se incluyen pseudoestaciones

hasta un error del 5,5 % aproximadamente.

En cuanto a las matrices MAC, se han calculado comparando los modos teéricos con los obtenidos
al aplicar el ITD. Los resultados se muestran en las figuras 4.15, 4.16, 4.17, 4.18 y 4.19. Se observa
que los valores son muy préximos a 1 en los términos de la diagonal principal y cercanos a 0 en el
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Tabla 4.8 Errores relativos de los polos y modos estimados variando la cantidad de pseudoestaciones.

Error relativo ( %) de los polos y modos estimados para cada anélisis

Analisis Modo 1 Modo 2 Modo 3
Sin pseudo- | 4346 0.6169 0.2199 00304 0.1771 0.2932
estaciones

! psec‘i‘gr‘:em' 0,0258 0,5817 0.2426 0.2690 0,0499 3,0085

2 pseudoesta- | (1 0,5558 0.2867 0.2341 0,0161 3,6574
ciones

3 pseudoesta- | 1503 0.5088 0.2911 0,2849 0.0101 4.6465
ciones

4 pseudoesta- | 3 0.5031 0.3608 0.2798 0.0160 5.4467
ciones

resto, para todos los andlisis. Por tanto, se puede afirmar que los modos estimados se corresponden
con los tedricos. Cabe destacar que, conforme aumenta el nimero de pseudoestaciones, el valor de
los términos MAC, 3 y MACs 5 se eleva. Esto quiere decir que la independencia lineal de los modos
va decreciendo.

Modo asociado
1 2 3

Modo 1 2 3
1 1,000 | 0,0135 | 0,0258
2 0,0094 | 0,9992 | 0,028
3 0,0268 | 0,0289 | 1,000

Modo asociado
N

w

Figura 4.15 Representacion 2-D y numérica del MAC sin pseudoestacion.
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o 2 0,0112 | 0,9992 | 0,0229

3 0,0262 | 0,0295 | 1,000
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=0

Figura 4.16 Representacion 2D y numérica del MAC con 1 pseudoestacion.
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Modo asociado
1 2 3
1
! 0.8
g Modo 1 2 3
5 06 1 1,000 | 0,0138 | 0,0258
g’ N 2 [ 00117 | 0,9993 | 0,0232
S ' 3 0,0261 | 0,0296 | 1,000

Figura 4.17 Representacion 2D y numérica del MAC con 2 pseudoestaciones.
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g o6 1 1,000 | 0,0138 | 0,0257
L§2 9y 2 0,012 | 0,9994 | 0,0237
= 30,0261 | 0,0299 | 1,000

w

Figura 4.18 Representacion 2D y numérica del MAC con 3 pseudoestaciones.
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Modo 1 2 3
06 1 1,000 | 0,0138 | 0,0257
o 2 0,0121 | 0,9996 | 0,0245
3 0,0262 | 0,0300 | 1,000
0.2
0

Figura 419 Representacion 2D y numérica del MAC con 4 pseudoestaciones.

Modo asociado
N

w

La informacién mds importante a extraer de este apartado es que, a medida que se incrementa
la cantidad de pseudoestaciones, las estimaciones de los polos y los modos del sistema analizado
mejoran en general. No obstante, es necesario controlar cudntas se introducen porque, si se crean un
gran nimero de pseudoestaciones, puede empeorar la estimacion realizada. Para ello, los criterios
del MCF y el MAC sirven como orientacion.






5 Analisis modal teérico a viga en
voladizo

n este capitulo van a obtenerse de forma analitica las frecuencias naturales y los modos de
E vibracién de una viga en voladizo a partir de la teoria de vigas de Euler-Bernoulli, para tener
una referencia de los resultados a obtener de los datos experimentales y normalizar los modos
estimados con respecto a los tedricos.

5.1 Modelo de viga segun la teoria de Euler-Bernoulli

Este modelo permite describir las vibraciones transversales de una viga bajo las siguientes hipdtesis:

* El material tiene un comportamiento eléstico-lineal, descrito por la ley de Hooke.
* Las vibraciones se producen en un plano principal de inercia.

* No se consideran las deformaciones debidas al cortante.

 Las inercias de giro de las secciones son despreciables.

* Hay pequenas deformaciones y pequefios desplazamientos.

Para hallar la ecuacién de movimiento del sistema, se plantean las condiciones de equilibrio para
una seccion infinitesimal de la viga situada a una distancia 1 del extremo izquierdo y de longitud
dn. Dicha rebanada est4 sometida a esfuerzos cortantes y momentos en ambas caras. En la figura
5.1 se muestra un esquema de la viga sometida a vibracién libre y en la 5.2 la rebanada.

Figura 5.1 Esquema de la viga elemental [13].
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oV

oM

Figura 5.2 Rebanada sometida a cortantes y momentos [13].

De plantear el equilibrio de fuerzas en direccién transversal, despreciando los infinitésimos de
orden superior, se obtiene:

oV 0%y

y del equilibrio de momentos, también despreciando los infinitésimos de orden superior:

M
M—i—Vdn—M—a—dn:O (5.2)
n
operando las ecuaciones 5.1 y 5.2 se llega a:
oV 0%y
—mn)=—2 =0 53
an () 5 (5.3)
oM
- =0 54
an 54

derivando la ecuacion 5.4 respecto a 77 y sustituyendo la expresion en la ecuacién 5.3, se obtiene lo
siguiente:
oM 0%y
—mn)=5 =0 5.5
o (1) 552 (5.5)
para quitar el momento de la expresién anterior, se usa la ecuacion 5.6 que relaciona las variables y
y M através de la ley de comportamiento:

82
9y _ _ M) (5.6)
on*  EI(n)
al sustituir esta expresion en la ecuacién 5.5 se llega a:
0? 0%y 0%y
— | EI(n)=— n(n) =5 =0 5.7
o (B1O0 G ) + min G 5)

y si se asume que los términos E1(n) y m(n) son constantes a lo largo de la viga, puede simplificarse

llegando a la ecuacién 5.8.

4 2
Elany LYy (5.8)

Las condiciones iniciales del problema son y(1,0) = yo(n) y 9(1,0) = 9o(n). Ademads, hard
falta establecer cuatro condiciones de contorno, ya que se tienen derivadas de cuarto orden con
respecto a 7). Para resolver la ecuacién 5.8 se usa la técnica de separacion de variables, asumiendo
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una solucién del tipo y(n,t) = ¢(n)y(t). Sustituyendo esta expresién en 5.8 se obtiene:

EI$™ (n)y(t) + me(n)ij(t) = 0 (5.9)

y agrupando a un lado y otro de la igualdad los términos dependientes de 1 y ¢, respectivamente:

v oy
o1 () m ) _ 4 (5.10)

¢(n) ET y(t)
donde se ha introducido la constante A ya que la tnica forma de que una funcién dependiente de 7 y
otra dependiente de ¢ sean iguales es que ambas sean constantes. De la expresién 5.10 se obtienen
dos ecuaciones diferenciales ordinarias. La primera es:

§ EI ,
§(t) + —Xy(t) =0 (5.11)

cuya solucion tiene la forma
y(t) = C cos (wt — ¢) (5.12)

siendo C'y ¢ constantes de integracion que dependen de las condiciones iniciales del problema, y
w definiéndose segun la expresion de la izquierda de la ecuacién 5.13.

EI 2
WX o X % (5.13)
La segunda ecuacién diferencial es
¢V (n) — Ne(n) =0 (5.14)
que admite soluciones tales como
¢(n) = De™ (5.15)

que al sustituir en 5.14 se llega a la ecuacion 5.16.

(r* — M) De™ =0 (5.16)

Para obtener soluciones distintas a la trivial, debe cumplirse que 7* = A%, por lo que existen
cuatro soluciones de r:
r = )\, o = —)\, r3 = ])\, Ty = —])\ (517)

siendo la solucién general de la ecuacién 5.14
¢(n) = D1e* + Dye™ 1 + Dged™ + Dye =M (5.18)

que haciendo uso de las relaciones e*7* = cosz + jsenz y et* = coshx & senh z pueden

reescribirse como
#(n) = By sen (An) + By cos (An) + By senh (An) + By cosh (An) (5.19)

donde By, B,, B3 y B, son constantes de integracion que se obtienen de las condiciones de contorno
de la viga.

A partir de aqui se particulariza para el caso de una viga en voladizo, donde uno de sus extremos
estd empotrado y el otro libre, como se muestra en la figura 5.3.
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Figura 5.3 Esquema de la viga en voladizo [13].

Las condiciones de contorno para esta situacién son:
¢(0) =0, ¢(0)=0, M(L)=0-(¢"(L)=0), V(L)=0-(¢"(L)=0) (520)

calculando la primera, segunda y tercera derivada de la expresién 5.19 con respecto a 7 y particula-
rizando para las condiciones de contorno anteriores, se llega al siguiente sistema de ecuaciones:

By +B,=0

A(B; + By) =0

—A2(Bysen (ML) + By cos (AL) — Bysenh (AL) — B, cosh (AL)) =0
A3 (= Bj cos (A\) + Bysen (An) + Bs cosh (An) + By senh (An)) = 0

(5.21)

al despejar B, y B3 de la primera y segunda ecuacion respectivamente y sustituir en las dos tltimas
se llega a un nuevo sistema de ecuaciones que, escrito de forma matricial, queda como

sen (AL) +senh (AL)  cos (AL) + cosh ()\L)] [Bl] — [0] (5.22)

—cos (AL) —cosh (AL) sen(AL) —senh (AL)| | By 0

para que el sistema tenga infinitas soluciones se fuerza a que el determinante de la primera matriz
sea (. Haciendo uso de relaciones matemadticas, el sistema de ecuaciones puede reescribirse como:

cos (AL) -cosh(AL)+1=0

(5.23)
o cos (AL)+cosh (AL)
kK=", = sn (AL)+senh (AL)

de la primera ecuacién del sistema 5.23 se obtiene el valor \,, y de la segunda el valor de «,, para
n = 1,2,3,... . Con esta informacion ya pueden expresarse los n modos de vibracion de la viga en
voladizo segin la expresion 5.24.

¢p(n) = cosh (A, n) — cos (A1) — K, (senh (A, n) — sen (\,n)) (5.24)

La frecuencia natural de cada modo de vibracién, reformulando la ecuacion 5.13, puede obtenerse

comao:
EI 1.
wp = (L g m=pWH, 1= WH (5.25)

siendo A,, L la solucién n-ésima de la primera ecuacion del sistema 5.23. En la figura 5.4, se muestra
una gréfica con los 4 primeros puntos de corte de la funcién f(z) = cos (x) - cosh (z) + 1 con el
eje X.
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® Soluciones
5 | -
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X

Figura 5.4 Griéfica de f(x) y soluciones.

Con toda esta informacidn, ya puede expresarse la respuesta frente a vibracion libre de la viga en
voladizo como:

Z% M)y (t qun )C,y €08 (wnt — @) (5.26)

5.2 Aplicacion al sistema a estudiar

La estructura se trata de una viga de acero con seccion rectangular. Estd colocada de forma que
uno de sus extremos tiene impedidos todos los desplazamientos y giros, mientras que el otro estd
totalmente libre. A continuacion, en la tabla 5.1 se detallan sus propiedades.

Tabla5.1 Medidas y propiedades materiales de la viga.

Dato Simbolo Valor
Longitud L 0,8 m
Espesor W 0,03 m
Canto H 0,01 m
Moédulo de Young E 210 GPa
Densidad p 7850 kg/m3

Para calcular las frecuencias naturales de nuestra viga, particularizamos la ecuacion 5.25 para los
parametros de la tabla 5.1 y se calculan numéricamente los valores de \,, y «,,. A continuacion,
se muestra en la tabla 5.2 las soluciones numéricas y las frecuencias naturales para los 6 primeros
modos de vibracion. En la figura 5.5 se representan estos modos con una amplitud de desplazamiento
transversal en el extremo libre de 0,4 m.
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Tabla 5.2 Constantes para el cdlculo de los 6 primeros modos de la viga en voladizo y frecuencia
naturales del sistema estudiado.

Modo n AL K, w,, (Hz)
1 1,87510407 0.734095513 13,055
2 4,69409113 1.018467318 81,814
3 7,85475744 0.999224496 229,081
4 10,99540735 1.000033553 448,908
5 14,13716839 0.999998550 742,077
6 17,27875953 1.000000062 1108,535
0.4
03 —
oz s /\
Eooal (
<
T o T
z
L.g -0.1 HModo
8= \
-2
-0.2 5 /
74 —
03 Il 5
6
_04 — | | | | | | | y
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
x (m)

Figura 5.5 Deformada de la viga para los primeros 6 modos de vibracion.



6 Estimacion de parametros modales a
viga en voladizo

n este capitulo se van a aplicar los conocimientos adquiridos en el capitulo 4 sobre el funcio-
E namiento del I'TD junto con la informacién del modelo teérico de la viga del capitulo 5 para
obtener los pardmetros modales de una viga real ensayada en el laboratorio. Ademas, para tener
una primera aproximacion de las frecuencias naturales del sistema y factores de amortiguamiento
del sistema, se usard el método del peak picking explicado en el capitulo 2. Toda la informacién
relativa a la estructura ensayada, el montaje experimental y los datos captados ha sido recopilada
del trabajo realizado en [12].

6.1 Sistema a estudiar y configuracion del ensayo experimental

La estructura analizada se trata de una viga de acero con uno de sus extremos empotrado con dos
bloques metélicos y el otro extremo libre. Las propiedades de la viga vienen detalladas en la tabla
5.1. Para realizar los ensayos se usaron 32 puntos de medida para captar la respuesta dindmica del
sistema, experimentando con dos configuraciones distintas con 16 acelerémetros, piezoeléctricos
con una sensibilidad nominal de 100 mV/g y una masa de 4 g, en cada una de ellas. Se colocaron
los puntos de medida a una distancia de 25 mm entre cada uno de ellos, estando el punto de medida
1 a 10 mm del extremo fijo, y el punto de medida 32 a 10 mm del extremo libre.

En la configuracién I, los acelerémetros se ubicaron en las posiciones impares, y en la confi-
guracion I, en las pares, estando fijados a la viga mediante tornillos roscados. Haciendo esto, la
distribucién de la masa era distinta segin la configuracién ensayada. Para solucionarlo, se opt6 por
colocar tornillos de la misma masa en las posiciones donde no hubiera acelerémetros para que la
distribucién de masas siempre fuera la misma. En la figura 6.1 se representa un esquema con las
dos configuraciones.

En cuanto a la fuerza de excitacion, era aplicada en el extremo libre de la viga con un martillo
de impacto y se realizaron cinco pruebas distintas para cada configuracién, aunque los datos de la
fuerza registrados no se van a usar para estimar los pardimetros modales en esta memoria. En la
figura 6.2 se muestran fotografias del montaje en el laboratorio.

6.2 Datos obtenidos

Como se ha comentado en la seccidn anterior, se realizaron cinco ensayos para cada una de las dos
configuraciones definidas, habiendo en total diez conjuntos de datos de experimentos distintos. La
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Setup I ] dummy mass { accelerometer
Fixed end
Setup II
32
h=10
N
= 7
(Unit: mm) 1=1800 v

Figura 6.1 Esquema de las configuraciones Iy II, y ubicacién del punto de medida 1 y 32 [12].

Figura 6.2 Ensayo experimental a viga en voladizo: (a) montaje; (b) sensores y tornillos; (c) martillo
de impacto [12].

frecuencia de adquisicién era de 4096 Hz y se tomaron un total de 20480 registros por canal. Esto
es, durante 5 segundos se registré informacion en 17 canales, los 16 acelerémetros y el registro del
martillo de impacto. A continuacién, para visualizar el tipo de respuesta en aceleracion de la viga
frente al impacto del martillo se representan en las figuras 6.3, 6.4, 6.5, 6.6 y 6.7 los datos captados
en cada uno de los canales para la tercera prueba de la configuracién II.
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Figura 6.3 Datos registrados en los acelerémetros 1, 2, 3 y 4.
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Figura 6.4 Datos registrados en los acelerémetros 5, 6, 7 y 8.

Al observar las gréficas, hay varios detalles que pueden apreciarse. En primer lugar, en la figura
6.3 se ve que las aceleraciones captadas en el punto de medida 2 tienen menor amplitud que el
resto de los sensores. Ocurre lo contrario para los registros del punto de medida 32 en la figura 6.6,
donde las aceleraciones tienen mayor amplitud y tardan m4s tiempo en atenuarse. Estos hechos son
16gicos, ya que el primer sensor es el mds cercano al extremo empotrado y el dltimo, el més cercano
al extremo libre, para la configuracién II.

Respecto a la figura 6.7, se comprueba que el registro en aceleracién poco después del impacto
tiene la forma tipica de una vibracién libre. En la grafica situada a la izquierda puede verse que se
cumple que la fuerza aplicada al sistema es de tipo impulsivo, por lo que el método de Ibrahim
puede usarse tomando registros de la respuesta en aceleracion en los que el efecto del impacto se

haya disipado.
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Figura 6.5 Datos registrados en los acelerémetros 9, 10, 11y 12.
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Figura 6.6 Datos registrados en los acelerémetros 13, 14, 15y 16.
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Figura 6.7 Datos ampliados del acelerémetro 16 y del martillo de impacto durante la aplicacién de
la fuerza.
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6.3 Estimacion y validacion de los parametros modales

6.3.1 Peak picking y mode picking

Para realizar una primera aproximacién de las frecuencias naturales, factores de amortiguamiento y
modos de la viga ensayada, van a usarse el peak picking y el mode picking. Al ser métodos que
s6lo permiten una entrada, va a aplicarse directamente sobre los registros del acelerémetro 16, es
decir, los puntos de medida 31 y 32 para la configuracién 1 y II respectivamente. Antes de aplicar
los métodos, es necesario transformar los registros temporales en aceleraciéon al dominio de la
frecuencia. Para ello, va a usarse el comando fft d¢ MATLAB® que calcula la transformada discreta
de Fourier (DFT) utilizando un algoritmo de FFT.

La sefial se ha discretizado a una frecuencia de muestreo, f,, de 4096 Hz para evitar el aliasing
con un total de 16384 puntos. Con estos parametros, se pueden tomar datos contenidos en un
intervalo de 4 s. No es necesario aplicar funciones ventanas para evitar el leakage, ya que, tomando
el primer registro en el instante 0,95 s y el dltimo 4 s més tarde, puede considerarse que no hay
discontinuidad entre el primer y el dltimo dato. En cuanto al espectro de aceleracién en frecuencia,
se extiende hasta los 2048 Hz con una resolucién de 0,25 Hz. En la figura 6.8, se muestran los
espectros de aceleracién obtenidos para el primer ensayo de la configuracién I y II, respectivamente,
con los primeros seis picos de resonancia marcados. Se ha omitido representar el resto de espectros
en favor de la brevedad, debido a que los resultados son muy similares para todos los ensayos de
una misma configuracion.

1 0—5 Il Il Il Il Il Il Il Il Il Il
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Frecuencia (Hz)

(a)

gm" ’} | /
\E/‘O—z’(‘ |/ |
310'3*‘
R 104

-5 L L L L 1 1
1
0 0 200 400 600 800 1000 1 200 1400 1 600 1 800 2000
Frecuenc1a

Figura 6.8 Espectros del acelerémetro 16 en el primer ensayo y picos seleccionados para:
(a) Configuracién I; (b) Configuracion II.
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En estas graficas se observa que los picos de resonancia estan lo suficientemente alejados. Por
tanto, la suposicion de que los modos estan desacoplados entre si, propia de los métodos SDOF, se
cumple, pudiendo afirmar que la estimacién se aproxima a la realidad.

Para obtener los modos mediante el mode picking, se han normalizado los valores de los espectros
de aceleracion en las frecuencias naturales en cada sensor con respecto al del acelerdmetro mds
cercano al extremo libre. Operando de esta manera, se consigue que la tltima componente del
modo calculado para cada configuracién sea unitaria. La parte imaginaria de los modos no se ha
considerado para calcular los valores del MAC ni para representarlos graficamente en estos andlisis.

Con los modos estimados, se calculan las matrices MAC para cada configuracién usando siempre
los modos del primero de los ensayos como conjunto de vectores de referencia. Actuando asi, se
verifica si existe correlacion entre los modos obtenidos en los distintos ensayos de una misma
configuracién. A continuacioén, en las figuras 6.9 y 6.10 se muestran las matrices MAC comparando
los modos obtenidos del primer ensayo y del segundo tanto para la configuracién I como para la II.
El resto de las matrices MAC aportan resultados practicamente iguales, por lo que no se incluyen en
la memoria.

Modo asociado
1 2 3 4 5 6

1
]
‘ ‘ Modo | 1 2 3 4 5 6

5 08 1| 00998 | 0,0037 | 0,0010 | 0,0049 | 0,0021 | 0,0036
3 2 | 00038 | 1,0000 | 0,0023 | 0,0024 | 0,0040 | 0,0024
o= 0.6
g3 300013 | 00023 | 1,0000 | 0,0012 | 0,0040 | 0,0035
<
c 4 4 | 00045 | 0,0024 | 0,0013 | 1,0000 | 0,0017 | 0,0037
s 04
= 5 | 0,0018 | 0,0040 | 0,0040 | 0,0017 | 1,0000 | 0.0021

5 " 6 | 00029 | 00023 | 0,0035 | 0,0037 | 0,0021 | 1,0000

6

Figura 6.9 Representacién 2D y numérica del MAC para el segundo ensayo de la configuracién 1.

Modo asociado
1 2 3 4 5 6

! Modo 1 2 3 4 5 6

2 08 1 0,9999 | 0,0060 | 0,0041 | 0,0056 | 0,0058 | 0,0035
7% 2 0,0065 | 1,0000 | 0,0052 | 0,0053 | 0,0048 | 0,0073
g 3 o0 3 0,0036 | 0,0052 | 1,0000 | 0,0083 | 0,0051 | 0,0051
é 4 04 4 0,0058 | 0,0054 | 0,0084 | 1,0000 | 0,0074 | 0,0044
Ev 5 0,0051 | 0,0047 | 0,0053 | 0,0077 | 1,0000 | 0,0083

5 102 6 0,0035 | 0,0073 | 0,0051 | 0,0043 | 0,0086 | 1,0000

6

Figura 6.10 Representacién 2D y numérica del MAC para el segundo ensayo de la configuracién II.

Claramente, se puede observar que los modos identificados en las distintas pruebas de una
misma configuracién son los mismos, ya que los términos de la diagonal principal son 1, y el resto
aproximadamente 0. Habiendo comprobado la correlacion entre las estimaciones mediante el MAC
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se ha decidido promediar las frecuencias naturales y los factores de amortiguamiento obtenidos con
el peak picking para las cinco pruebas de cada configuracién para comparar los resultados. En la
tabla 6.1 se muestran los valores de los seis primeros modos identificados.

Tabla 6.1 Media de las seis primeras frecuencias naturales y factores de amortiguamiento identifi-
cados entre ensayos de una misma configuracién mediante peak picking.

Configuracion I Configuracion II
Modon | @, (Hz) | &, (%) | @, Hz) | &, (%)
1 11,75 | 0,7774 | 11,75 | 1,2339
2 73 0,2213 73 0,2144
3 206,75 | 0,7769 206 0,6147
4 403 0,2449 | 402,75 | 0,2766
5
6

662,75 | 0,2657 | 662,15 | 0,2349
986,55 | 0,2503 | 986,8 | 0,2954

Observando la tabla, se puede apreciar que las frecuencias naturales estimadas en ambas confi-
guraciones son pricticamente idénticas para los seis primeros modos de la viga. En cambio, los
factores de amortiguamiento no toman el mismo valor, especialmente en los modos 1y 3, donde
las diferencias son notables. Este hecho puede ser debido al caricter local del peak picking y no
necesariamente a captar medidas en distintos puntos de la viga.

Para reflejar la informacion de los modos identificados se ha decidido representarlos en un eje
de coordenadas, donde el eje X estd asociado a la posicién horizontal de cada punto de medida
y en el eje Y se representa el desplazamiento modal de dicho punto. Para posteriormente poder
compararlos con los modos obtenidos con el método de Ibrahim y los modos tedricos segin el
modelo de viga de Euler-Bernoulli, los desplazamientos modales de la configuracién I han sido
multiplicados por el valor escalar del desplazamiento modal tedrico en el punto de medida 31. Se ha
actuado de la misma forma para la configuracién II con el punto de medida 32. En la figura 6.11 se
muestran los modos obtenidos con los datos experimentales del ensayo 1 de la configuracién Iy II.
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Figura 6.11 Deformadas de los primeros seis modos identificados mediante mode picking en el ensayo 1.
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A simple vista, se comprueba que la forma de los modos se corresponde con la obtenida analiti-
camente, excepto para el primer modo. Su deformada, a pesar de tener un aspecto similar al modo
tedrico, presenta irregularidades en los 16 primeros puntos de medida. Para el resto de ensayos, las
gréficas que se obtienen son idénticas por lo que se han excluido de esta memoria.

6.3.2 Método de Ibrahim

Para realizar una estimacion global de los pardmetros modales se va a aplicar el ITD con los c6digos
desarrollados en MATLAB® . Para ello, ciertos pardmetros del método se han mantenido constantes
desde el principio. Los motivos de esta decision y los valores escogidos son los siguientes:

* Numero de medidas reales, p: se han usado los datos captados por los 16 acelerémetros en
cada configuracidn, ya que, de esta manera se disponen de mds medidas para generar las
matrices x y X. Ademds, se consigue que las formas modales queden mejor descritas a la
hora de visualizarlas.

* Desfases temporales At; y Ats: teniendo en cuenta la restriccion impuesta por la ecuacion
3.19, se ha seleccionado un At; = ﬁ s, de forma que se puedan llegar a identificar
frecuencias hasta los 2048 Hz. En cuanto a At;, su valor es igual que At; para disminuir la
toma de decisiones del operador.

» Espaciado entre registros, h: dado que se estan trabajando con datos procedentes de la
respuesta ante vibracion libre que se atendan en un corto espacio de tiempo (figura 6.7), se
ha escogido h = ﬁ s. De esta forma, se pueden tomar una mayor cantidad de registros que
construyan las matrices x y x antes de que se entre en la regién donde el ruido predomina
por encima de la sefial de interés.

* Desfases temporales de las pseudoestaciones, At,: aunque no se sepa a priori la cantidad de
pseudoestaciones introducidas, se sabe que para aplicar el criterio del MCF al menos hay que
introducir una pseudoestaciéon. En cuanto a los desfases temporales, tomaran los valores de
una sucesion de ndmeros primos multiplicada por la resolucién del sistema de adquisicidn de

datos. La expresion usada es la siguiente: Aty = [17 29 41 53 ...]ﬁ S.

* Valor del MCF de corte, MCF, : al igual que en el andlisis hecho en el capitulo 4, se ha

corte*
seleccionado un MCF,,,,. de 0,9.

Respecto al resto de pardmetros, aunque no se haya fijado su valor, se tiene una idea del rango en el
que deben encontrarse algunos de ellos para un correcto funcionamiento del método. A continuacién,
se explican las razones:

* Instante del primer registro, t,: ha de tomarse instantes posteriores a la aplicacién del impacto
con el martillo para que se disipe el efecto del choque, pero no muy lejanos al comienzo de
la vibracion libre. Una referencia para este valor estd en el entorno de los 0,05 s desde el
impacto del martillo aproximadamente.

* Instante del ultimo registro, ¢ ;: debido al confeccionado del c6digo este pardmetro depende
de la eleccion del resto. Sin embargo, se sabe que han de tomarse registros que sean proximos
al comienzo de la vibracién libre para evitar regiones donde los valores de la respuesta sean
casi nulos. Por tanto, observando la figura 6.7 se ha optado por que, tras seleccionar el resto
de parametros del ITD, ¢, esté alrededor de los 1,5 s.

En cuanto al niimero de columnas de las matrices x y X y la cantidad de pseudoestaciones a
introducir, teéricamente se supone que, cuanto mas altos sean sus valores, el método estima con
mayor exactitud los modos de vibracién del sistema. No obstante, se ha comprobado en el capitulo
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4 que, a partir de cierto punto, los errores pueden aumentar o incluso el criterio del MCF puede
descartar modos candidatos.

Con toda esta informacién en mente, se han realizado barridos de los parametros ¢, ncol y de
la cantidad de pseudoestaciones introducidas, para ver la variacién de las frecuencias naturales y
factores de amortiguamiento estimados. Tras analizar los resultados obtenidos con los barridos a
cada ensayo experimental, los pardmetros seleccionados para aplicar el ITD se detallan en la tabla
6.2.

Tabla 6.2 Parametros seleccionados del ITD para la viga en voladizo.

Pardmetro Simbolo Valor
Nuimero de estaciones reales P 16
Numero de medidas ficticias k-p 64
Pl #5 |y 0 sygs
Instante del primer registro to (14 35)s~1,076s
Numero de columnas de x y x ncol 1500
Espaciado entre registros h ﬁ S
Desfase entre X y X Aty ﬁ s
Desfase entre x y x Aty ﬁ S
Instante del dltimo registro ty (14 388y s~ 1,455
MCF de corte MCF ,.ic 0,9

Con esta seleccion propuesta, tras aplicar el criterio del MCF, se consiguen identificar desde
el segundo hasta el sexto modo del sistema para todos los ensayos de las dos configuraciones. No
ocurre lo mismo para el primer modo, que sélo es posible describirlo al completo con los 32 puntos

de medida al aplicar el ITD a los datos experimentales de los ensayos 1 y 4 en ambas configuraciones.

Los modos obtenidos se han normalizado con respecto a la dltima componente para que ésta sea
unitaria y no se ha tenido en cuenta la parte imaginaria de los modos, al igual que se hizo en el mode
picking. De esta forma, se obtienen dos tipos de matrices MAC para cada configuracién usando
como conjunto de modos de referencia los obtenidos en el primero de los ensayos.

Modo asociado
2 3 4 5 6

Modo 2 3 4 5 6

Modo asociado

Figura 6.12 Representacion 2D y numérica del MAC para el segundo ensayo de la configuracion 1.
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Modo asociado
1 2 3 4 5 6

! Modo 1 2 3 4 5 6

2 08 1 0,9999 | 0,0030 | 0,0017 | 0,0043 | 0,0018 | 0,0028
”_% 2 0,0028 | 1,0000 | 0,0023 | 0,0024 | 0,0040 | 0,0024
g 8 e 3 0,0012 | 0,0023 | 1,0000 | 0,0012 | 0,0040 | 0,0035
é 4 04 4 0,0048 | 0,0024 | 0,0012 | 1,0000 | 0,0017 | 0,0037
g 5 0,0019 | 0,0040 | 0,0040 | 0,0017 | 1,0000 | 0,0023

5 lo2 6 0,0032 | 0,0024 | 0,0035 | 0,0037 | 0,0023 | 1,0000

6

Figura 6.13 Representacién 2D y numérica del MAC para el cuarto ensayo de la configuracion 1.

Modo asociado
2 3 4 5 6

Modo 2 3 4 5 6
2 08 1 0,0072 | 0,0046 | 0,0056 | 0,0056 | 0,0036
] 1,0000 | 0,0061 | 0,0056 | 0,0049 | 0,0070
3 0.6

0,0061 | 1,0000 | 0,0084 | 0,0054 | 0,0051

0,0056 | 0,0085 | 1,0000 | 0,0075 | 0,0043

IS
o
~

Modo asociado

0,0050 | 0,0054 | 0,0076 | 1,0000 | 0,0076

[ 7 B N SRR S

(&

0,0070 | 0,0051 | 0,0043 | 0,0078 | 1,0000

[«

Figura 6.14 Representacién 2D y numérica del MAC para el segundo ensayo de la configuracién II.

Modo asociado
1 2 3 4 5 6

! Modo 1 2 3 4 5 6

2 08 1 1,0000 | 0,0072 | 0,0046 | 0,0056 | 0,0056 | 0,0036
0,0071 | 1,0000 | 0,0061 | 0,0056 | 0,0049 | 0,0070

3 o8 0,0046 | 0,0061 | 1,0000 | 0,0084 | 0,0054 | 0,0051

0,0061 | 0,0056 | 0,0085 | 1,0000 | 0,0074 | 0,0043
0,0059 | 0,0050 | 0,0053 | 0,0076 | 1,0000 | 0,0076
0,0036 | 0,0069 | 0,0051 | 0,0043 | 0,0078 | 1,0000

o
N
S

Modo asociado

QAW N

(8}

(2]

Figura 6.15 Representacion 2D y numérica del MAC para el cuarto ensayo de la configuracién II.

A simple vista se ve que las matrices MAC no coinciden en el tamafio de columnas para el
ensayo 2 y 4 de una misma configuracién. Esto es debido a que, como se dijo anteriormente, s6lo
se ha conseguido identificar el primer modo de vibracién en el primer ensayo y en el cuarto. Lo
mds destacable de las cuatro imigenes es la alta correlacion entre los vectores asociados a un
mismo modo obtenido con distintos ensayos, ya que, cuando coinciden fila y columna del modo
asociado su valor es casi 1. También se ve que cuando no coinciden, los valores que toma el MAC
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son muy préximos a 0, pudiendo interpretarse esto como un indicador de ortogonalidad entre los
modos estimados. Con esta informacion, se ha optado por promediar las frecuencias naturales, los
amortiguamientos y los MCF del segundo al sexto modo obtenidos con el ITD. En cambio, para los
pardmetros del primer modo se ha decidido reflejar el valor que devuelve el ITD para cada ensayo.
A continuacidn, en las tablas 6.3 y 6.4 se detallan estos resultados.

Tabla 6.3 Media de las frecuencias naturales, factores de amortiguamiento y MCF, del modo 2 al 6,
entre ensayos de una misma configuracién mediante ITD.

Configuracion I Configuracion II
Modon | @, Hz) | &, (%) | MCF | @, (Hz) | &, (%) | MCF
2 72,9342 | 0,2527 | 0,9933 | 72,9912 | 0,2320 | 0,9980
206,6019 | 0,6269 | 0,9702 | 206,3318 | 0,5609 | 0,9931
402,8635 | 0,2327 | 0,9981 | 402,8272 | 0,2594 | 0,9990
662,5800 | 0,2717 | 0,9436 | 661,9733 | 0,2361 | 0,9813
986,2864 | 0,2545 | 0,9783 | 986,7461 | 0,3010 | 0,9964

N | N W

Tabla 6.4 Frecuencia natural, factor de amortiguamiento y MCF del primer modo para los ensayos
1 y 4 aplicando el ITD.

Configuracion I Configuracion II

Ensayo | wy (Hz) | & (%) | MCF | w; (Hz) | & (%) | MCF
1 11,6991 | 2,1356 | 0,9458 | 11,6829 | 0,6749 | 0,9652
4 11,6926 | 1,1117 | 0,9427 | 11,6929 | 1,1708 | 0,9041

Analizando la tabla 6.3, puede verse que tanto las frecuencias naturales como los factores de
amortiguamiento identificados en las dos configuraciones tienen valores muy similares entre si para
todos los modos. Ademads, excepto la identificacién del quinto modo para la primera configuracion,
todas tienen un MCF superior al 95 %. De entre todos los modos destacan por su exactitud el
segundo y el cuarto, cuyo MCF es muy préximo a 1, indicando que se corresponden con modos de
vibracién de la estructura.

Respecto a la tabla 6.4, se aprecia que el valor de la frecuencia natural es practicamente el mismo
en todos los ensayos. Sin embargo, los factores de amortiguamiento toman valores muy distintos,
incluso para ensayos de una misma configuracién. Este hecho, junto a que los MCF no son tan
cercanos a 1, hace pensar que la estimacion del primer modo no es correcta, al igual que ha pasado
con los métodos del peak picking y mode picking.

En cuanto a los valores de los modos de vibracién identificados, representdndolos siguiendo el
mismo procedimiento que en el caso del mode picking, se obtiene la gréfica de la figura 6.16 en el
caso del ensayo 1.

De nuevo, se verifica que la deformada de los modos estimados es parecida a la obtenida de forma
tedrica con el modelo de viga de Euler-Bernoulli, menos en el caso del primer modo. La repeticion
de este hecho, tanto en el caso del peak picking y mode picking como en el ITD, hace pensar que
estas discrepancias no se deben al método utilizado, sino que residen en aspectos relativos al montaje
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Deformada (m)

Figura 6.16 Deformadas de los primeros seis modos identificados mediante ITD en el ensayo 1.
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experimental, sensores, fuerza de excitacion, etc. o a diferencias en el comportamiento dindmico de
la estructura real y la tedrica.

6.4 Comparacion de los resultados analiticos y los experimentales

cadas mediante peak picking e ITD.

Una vez estimados los pardmetros modales de la viga ensayada en el laboratorio mediante peak
picking, mode picking e ITD, van a compararse estos valores entre si y con los obtenidos de
forma analitica en el capitulo 5. En la tabla 6.5 se recopilan las frecuencias naturales calculadas
mediante los distintos métodos aplicados. Las frecuencias naturales del primer modo obtenidas con
el ITD estdn marcadas con un asterisco porque su media se ha calculado Gnicamente a partir de los
resultados de los ensayos 1y 4.

Tabla 6.5 Frecuencia naturales tedricas y media de las seis primeras frecuencias naturales identifi-

Configuracion I

Configuracion II

Teoérico | Peak picking ITD Peak picking ITD
Modon | w, (Hz) w,, (Hz) w,, (Hz) w,, (Hz) w,, (Hz)
1 13,055 11,75 11,6959 * 11,75 11,6879 *
2 81,814 73 72,9342 73 72,9912
3 229,081 206,75 206,6019 206 206,3318
4 448,908 403 402,8635 402,75 402,8272
5 742,077 662,75 662,5800 662,15 661,9733
6 1108,535 986,55 986,2864 986,8 986,7461

En primer lugar, salta a la vista que las frecuencias naturales tedricas y las experimentales son
distintas en todos los casos, pero han cumplido su funcién orientativa para asociar las frecuencias
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naturales identificadas con el modo de vibracién del sistema. En cuanto a la comparacién entre los
valores obtenidos con peak picking y con el ITD, son aproximadamente iguales independientemente
del modo y la configuracién observada. Por tanto, puede afirmarse que la identificacién de las
frecuencias naturales ha sido correcta.

Para hacer un andlisis més exhaustivo acerca de las diferencias entre los resultados teéricos y los
experimentales, se ha calculado el error relativo ( %) entre la frecuencia tedrica y la experimental
obtenida en cada configuracién, dependiendo del método utilizado. En la tabla 6.6 se refleja la
informacién obtenida.

Tabla 6.6 Error relativo ( %) entre las frecuencias naturales teéricas y la media de las seis primeras
frecuencias naturales identificadas mediante peak picking e ITD.

Configuracion I Configuracion 11

Modo n | Peak picking ITD Peak picking ITD

1 9,996 10,410 * 9,996 10,4715 *

2 10,773 10,854 10,773 10,784

3 9,748 9,813 10,076 9,931

4 10,227 10,257 10,282 10,265

5 10,690 10,713 10,771 10,795

6 11,004 11,028 10,982 10,987

Se aprecia que el error estd en el rango del 10 al 11 % aproximadamente para todos los modos y
métodos. Es decir, la diferencia de orden de magnitud entre los valores tedricos y los experimentales
es consistente. Esto sugiere la idea de que el modelo tedrico usado no describe fielmente la estructura
ensayada. Una de las posibles causas de este suceso es la introduccion de los acelerémetros y los
tornillos, que pueden considerarse como masas puntuales colocadas a lo largo de la viga. También
ha podido afectar a la masa y rigidez del sistema el haber realizado agujeros en la viga para colocar
los acelerémetros y los tornillos.

Respecto a los factores de amortiguamiento, en el modelo tedrico empleado no se han introducido
términos que tengan en cuenta este efecto, por lo que tnicamente van a compararse los resultados
obtenidos con peak picking e ITD para las dos configuraciones. Para ello, se han usado los valores
medios de los factores de amortiguamiento estimados en cada ensayo, en la tabla 6.7 se muestran
los resultados. El factor de amortiguamiento del modo 1 obtenido al aplicar el ITD ha sido excluido,
ya que sdlo se ha identificado con los datos del ensayo 1 y 4, con grandes discrepancias entre si.

Si se pasa por alto el primer modo y el tercero, para el resto de casos, los factores de amortigua-
miento son muy parecidos entre si, independientemente del método utilizado o de la configuracién
que se observe. Un motivo posible de las diferencias de los factores de amortiguamiento estimados
para el modo 1y 3 es que sus valores son superiores al 0,5 %. Esto puede suponer que los métodos
aplicados no funcionen correctamente, ya que, por un lado, el método del ancho de banda usado en
el peak picking supone que &,, es muy pequefio, y, por otra parte, se ha explicado que los métodos
de estimacion en el dominio del tiempo, como es el ITD, son mds adecuados para casos en los que
el sistema estd ligeramente amortiguado.
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Tabla 6.7 Media de los seis primeros factores de amortiguamiento identificados mediante peak
picking e ITD.

Configuracion I Configuracion II
Peak picking | ITD Peak picking | ITD
Modo n & (%) & (%) & (%) &, (%)

1 0,7774 ~ 1,2339 ~
0,2213 0,2527 0,2144 0,2320
0,7769 0,6269 0,6147 0,5609
0,2449 0,2327 0,2766 0,2594
0,2657 0,2717 0,2349 0,2361
0,2503 0,2545 0,2954 0,3010

N || W

Por dltimo, van a compararse entre si los modos tedricos, los obtenidos mediante mode picking y
los obtenidos mediante el ITD. Para ello, va a usarse el MAC para cuantificar la correlacion existente
entre ellos y de forma visual representando en una misma grafica, para cada modo, la deformada
calculada con cada método. Este proceso se va a aplicar con los modos de vibracion identificados a
partir de los datos experimentales del ensayo 1 y, en favor de la brevedad, para el resto de pruebas
no se muestran los resultados por ser practicamente iguales.

En las figuras 6.17, 6.18 y 6.19 se muestran las matrices MAC calculadas, siendo el conjunto de
modos de referencia el que estd situado a la izquierda de la gréfica.

Modos mode picking
1 2 3 4 5 6

Modo 1 2 3 4 5 6

1 0,9982 | 0,0006 | 0,0000 | 0,0002 | 0,0002 | 0,0003
0,0000 | 0,9981 | 0,0023 | 0,0000 | 0,0004 | 0,0003
0,0006 | 0,0004 | 0,9963 | 0,0054 | 0,0001 | 0,0006
0,0000 | 0,0008 | 0,0008 | 0,9895 | 0,0096 | 0,0004
0,0003 | 0,0000 | 0,0009 | 0,0029 | 0,9797 | 0,0158
0,0000 | 0,0004 | 0,0000 | 0,0017 | 0,0055 | 0,9639

Modos tedricos

Al e W N

Figura 6.17 Representacion 2D y numérica del MAC entre modos tedricos y obtenidos con mode
picking.

En las tres imdgenes se observa que los términos de la diagonal principal son muy cercanos a 1,
indicando la consistencia de los modos calculados mediante las distintas vias. El resto de términos
de la matriz son practicamente 0, por lo que puede tomarse como un indicador de ortogonalidad.
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Modos ITD
1 2 3 4 5 6

Modo 1 2 3 4 5 6

0,9986 | 0,0010 | 0,0001 | 0,0003 | 0,0002 | 0,0003
0,0000 | 0,9978 | 0,0027 | 0,0000 | 0,0004 | 0,0002
0,0004 | 0,0004 | 0,9960 | 0,0056 | 0,0001 | 0,0006
0,0000 | 0,0008 | 0,0008 | 0,9893 | 0,0097 | 0,0004
0,0003 | 0,0000 | 0,0009 | 0,0030 | 0,9794 | 0,0151
0,0000 | 0,0004 | 0,0000 | 0,0016 | 0,0056 | 0,9649
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Figura 6.18 Representacion 2D y numérica del MAC entre modos tedricos y obtenidos con el ITD.

Modos ITD
1 2 3 4 5 6

-

Modo 1 2 3 4 5 6

0,9999 | 0,0004 | 0,0005 | 0,0001 | 0,0004 | 0,0000
0,0002 | 1,0000 | 0,0004 | 0,0003 | 0,0001 | 0,0006
0,0002 | 0,0002 | 0,9999 | 0,0012 | 0,0001 | 0,0002
0,0001 | 0,0003 | 0,0011 | 1,0000 | 0,0009 | 0,0001
0,0004 | 0,0001 | 0,0001 | 0,0008 | 1,0000 | 0,0009
0,0001 | 0,0007 | 0,0002 | 0,0001 | 0,0010 | 1,0000
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Modos mode picking
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Figura 6.19 Representacion 2D y numérica del MAC entre modos obtenidos con mode picking y
con el ITD.

No obstante, cuando se comparan los modos teéricos con cualquiera de los calculados mediante
los métodos experimentales, los valores de la diagonal principal no son tan préximos a 1 como en
el caso de comparar los modos obtenidos con el mode picking y el ITD, lo que hace pensar que las
estimaciones de los modos obtenidas con estos métodos son muy similares. Este hecho se evidencia
al representar las tres maneras en las que se ha calculado la deformada de cada modo en una misma
grafica. En las figuras 6.20, 6.21, 6.22, 6.23, 6.24 y 6.25 se muestran las gréficas obtenidas para
el modo 1, 2, 3, 4, 5 y 6, respectivamente. L.os marcadores cuadrados y circulares representan los
desplazamientos transversales de los puntos de medida impares y pares, respectivamente, con el
mode picking, mientras que las cruces y los puntos siguen la misma regla pero para la identificacion
con el ITD.

Al observar las graficas, puede comprobarse que los modos estimados experimentalmente son
muy parecidos a los del modelo tedrico de viga en voladizo, como indicaba el criterio del MAC,
tanto al usar el mode picking como con el ITD. Especialmente, destacan los modos 2 y 3, donde los
desplazamientos modales de los puntos de medida casi coinciden con los del modelo analitico. Si
ahora se compara la forma de los modos calculados aplicando el mode picking y usando el ITD, es

casi idéntica en todos los modos. Esto se aprecia muy bien gracias a la eleccion de los marcadores.

Puede verse como, en general, las cruces y los puntos quedan enmarcados dentro de los cuadrados
y los circulos, respectivamente, lo que evidencia que los modos identificados con ambos métodos
son aproximadamente iguales.
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Figura 6.20 Deformadas del primer modo en el ensayo 1.
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Figura 6.21 Deformadas del segundo modo en el ensayo 1.
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Figura 6.23 Deformadas del cuarto modo en el ensayo 1.
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7 Conclusion

n este capitulo se detallan las conclusiones principales tras el trabajo realizado y algunas de
las vias a desarrollar en futuras investigaciones para mejorar los resultados obtenidos en esta
memoria o extraer mds informacién de los datos experimentales.

7.1 Conclusiones

En esta memoria se ha hecho un extenso anélisis de cémo funciona el ITD para sistemas con
multiples grados de libertad. Se ha comprobado que el método consigue estimar con gran exactitud
los pardmetros modales en el caso de no haber ruido. No obstante, cuando la sefial de la respuesta estd
contaminada por ruido, también sigue siendo capaz de identificar, aunque empeorando ligeramente
los resultados, las frecuencias naturales, factores de amortiguamiento y modos de vibracion, sin
necesidad de filtrar la sefial captada.

Por otra parte, se ha visto que una de las desventajas que tiene el ITD es la cantidad de pardmetros
que debe seleccionar el operador para aplicar el método, como los desfases temporales de las
pseudoestaciones At, el instante del registro inicial ¢, el desfase temporal At,, etc. Se ha detectado
que al hacer una eleccion distinta de los pardmetros, las estimaciones realizadas pueden variar
bastante o incluso descartar polos y modos que realmente describen el comportamiento dindmico
de la estructura.

Por tanto, si se quieren obtener correctamente los pardimetros modales del sistema analizado,
el operador debe hacer un estudio previo a la aplicacién final del ITD. Para ello, puede emplear
el propio ITD variando sus pardmetros para ver dénde se estabilizan las frecuencias naturales y
factores de amortiguamiento, calcular los pardmetros modales a partir de un modelo tedrico que
describa la estructura real o identificarlos mediante otros métodos de estimacion propios del andlisis
modal experimental.

Cuando se ha aplicado a la viga en voladizo ensayada en el laboratorio, se han empleado esas
tres vias para tratar de conseguir los mejores resultados, y de hecho, ha sido muy eficaz. Al actuar
asi, se ha comprobado que las estimaciones realizadas con peak picking y mode picking han sido
muy similares a las hechas con la seleccion final de pardmetros del ITD, debido a que los modos
estaban bien desacoplados entre si y, en general, los factores de amortiguamiento eran muy bajos.
En cambio, ha habido mayores diferencias entre las estimaciones experimentales y los valores
tedricos de las frecuencias naturales del sistema. Sin embargo, se ha concluido que, al estar los
errores relativos contenidos alrededor del 10 al 11 % para todos los modos, las discrepancias se
deben a que en el modelo analitico no se han tenido en cuenta los cambios en las propiedades del
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sistema que generan los acelerémetros, los tornillos y los agujeros hechos en la propia viga para
colocar ambos elementos.

Por ultimo, es destacable que los pardmetros modales obtenidos a partir de los datos experimen-
tales de los distintos ensayos han sido casi idénticos, hecho verificado con las matrices MAC que
han sefialado una gran correlacién entre los resultados calculados para las diferentes pruebas.

7.2 Propuestas de mejora

Seria recomendable para completar ain mds el trabajo realizado implementar las siguientes medidas:

 Exactitud del ITD al variar porcentaje de ruido: serfa titil saber como cambian las estimaciones
con los mismos parametros seleccionados del ITD, al variar la cantidad de ruido que contiene
la sefial captada. Esta informacién podria usarse para establecer un criterio en el que a partir
de cierto porcentaje de ruido, se filtre la sefial para tratar de mejorar la estimacién de los
pardmetros modales.

* Uso de métodos MDOF en el dominio de la frecuencia: al aplicar este tipo de métodos se
estimarfan los pardmetros modales haciendo uso de los datos captados en los 16 acelerémetros
para cada ensayo. Con ello, la comparacion de los resultados seria méds coherente ya que
ambos métodos cuentan con la misma informacién de partida y podria comprobarse cudl
funciona mejor.

* Estimacidn de los pardmetros modales mediante el MEF: describir la viga mediante un modelo
de elementos finitos tridimensionales en softwares comerciales, por ejemplo ANSYS®, para
asi tener en cuenta los efectos introducidos por los acelerémetros, tornillos y agujeros en las
propiedades de la viga. De esta manera, los resultados experimentales y los teéricos serian
mds proximos entre si, y el modelo tedrico desarrollado podria ser usado para calcular el
comportamiento del sistema ante excitaciones mds complejas o al variar sus propiedades
mecdnicas.

» Uso de datos captados con el martillo de impacto: teniendo en cuenta, ademds de los registros
en aceleracion, los registros de fuerza recogidos por el martillo de impacto se podrian
conocer los coeficientes de participaciéon modal de la viga. Con esta informacién, seria
posible determinar cudnto contribuye cada modo a la respuesta dindmica del sistema. Si
alguno de ellos fuera despreciable respecto al resto por tener un valor muy bajo, se podria
generar un modelo teérico que no tuviera en cuenta este modo para asi disminuir el coste
computacional.

* Aplicacion a sistemas de mayor complejidad: una vez familiarizados con los procedimientos
propios del andlisis modal experimental, se podrian estudiar estructuras mas complejas, como
edificios o vehiculos. Con ello, las estimaciones de los pardmetros modales mediante ensayos
experimentales podrian usarse para validar modelos analiticos. Dichos modelos serfan utiles
para ver las variaciones en el comportamiento dindmico de la estructura al cambiar el disefio
de la misma. De esta manera, se evita fabricarla hasta que no cumpla las especificaciones
deseadas en el modelo tedrico.



Apéndice A
Cédigos para implementar el ITD

A continuacién, se incluyen parte de los archivos y funciones implementados en MATLAB® usadas
en esta memoria. Con ellas se pueden calcular polos y modos usando el ITD para un caso general y
los criterios de validacién de pardmetros.

A.1 Generacion de pseudoestaciones

Codigo A.1 Funcién para crear pseudoestaciones a partir de los datos captados y vector At,.

function [registros,pseudomedidas] = pseudoestaciones(sensores,
deltatau_s,CR)

% Esta funcidn genera pseudoestaciones para aplicar ITD. Las
pseudoestaciones

% se asocian a los sensores reales a partir del desfase temporal
deltatau.

% Los parametros de entrada son:

% sensores: medidas recogidas en los sensores de captacidén de datos en
vectores columna

% deltatau_s: vector que contiene el desfase temporal de cada
pseudoestacidn

% con respecto a la estacidén real ordenados de menor a mayor

% CR: resolucidén temporal del sensor usado

% La funcién devuelve las variables:

% registros: conjunto de medidas y pseudomedidas agrupadas en una misma

% variable con la misma cantidad de puntos

% pseudomedidas: pseudomedidas generadas para cada pseudoestacidén esta
informacién podria ser prescindible

npseudo=length(deltatau_s); ’% cantidad de pseudoestaciones
if deltatau_s(1) "= 0 % en caso de haber pseudoestaciones se asignan sus

valores
deltatauptos=round(deltatau_s (npseudo)/CR) ;
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% desfase en componentes entre estacidén real y ultima pseudoestacidn

nombre = sprintf(’n%d’, npseudo); % namero de la estacidn

pseudomedidas. (nombre)=sensores(deltatauptos+l:end,:); % asignacidn
de medidas a la Gltima pseudoestaciodn

ptos=height (pseudomedidas. (nombre)); 7% maxima cantidad de puntos que
puede tener cualquier estacién

registros=zeros(ptos, (npseudo+1)*width(sensores)); ’% inicializacidn
de los registros
registros(:,1:width(sensores))=sensores(l:ptos,:);
% guarda las n medidas reales tomadas en las estaciones reales en
las primeras n columnas de los registros
registros(:,npseudo*width(sensores)+1:end)=pseudomedidas. (nombre); %
coloca ultima pseudoestacidn

for i=npseudo-1:-1:1
% Proceso similar para el resto de pseudoestaciones
deltatauptos=round(deltatau_s(i)/CR);
nombre = sprintf(’n%d’, i);
pseudomedidas. (nombre)=sensores(deltatauptos+l:end,:);
registros(:,i*width(sensores)+1: (i+1)*width(sensores))=

pseudomedidas. (nombre) (1:ptos,:);
end

else

T

si no hay pseudoestaciones los registros seran las medidas tomadas en
los sensores

registros=sensores;
pseudomedidas=[];
end

end

A.2 Aplicacion del ITD

Cédigo A.2 Funcién para aplicar ITD a partir de los registros seleccionados.

function [polos,modos,varargout]=ITD(ncol,t0,deltatl,deltat3,h,CR,

h

b
b
b
b
b
b
b

registros)

Esta funcién aplica el método de Ibrahim a los registros
proporcionados

de la estructura excitada, devolviendo todos los polos y modos del

sistema, tanto los reales de la estructura como los asociados al ruido

del sistema de medicidn.

Los parametros de entrada son:

ncol: cantidad de columnas de la matriz \chi y \hat{\chi}

t0: Valor del primer instante que se usa [s]

deltatl: desfase de \chi respecto \hat{\chi} [s]
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% deltat3: desfase de X respecto a \bar{X} [s]

% h: espaciado temporal entre los registros usados [s]

% CR: resolucidén temporal del sistema de adquisicidén [s]

% registros: medidas recogidas en los sensores y pseudomedidas generadas

% La funcién devuelve las variables:
% polos: todos los polos calculados ordenados de menor a mayor médulo
% modos: todos los modos calculados ordenados segin indices de los polos

varargout=cell(1,nargout) ;

i_O=round(t0/CR)+1; % primera comp. de los registros usados

int=round (h/CR); % espaciado en componentes entre los registros usados
deltaptosl=round(deltatl/CR); 7 desfase en componentes deltat_1
deltaptos3=round(deltat3/CR); 7% desfase en componentes deltat_3

N=size(registros,2); ’ nimero total de medidas
registros=registros’; % se cambia a registros contenidos en filas

% términos matriz \chi
X=registros(1:N,i_O:int:i_0+(ncol-1)*int);
Xdeltat3=registros(1:N,i_O+deltaptos3:int:i_0+deltaptos3+(ncol-1)*int);

% términos matriz \hat{\chi}

Xdeltatl=registros(1:N,i_O+deltaptosl:int:i_O+deltaptosi+(ncol-1)*int);

Xdeltatldeltat3=registros(1:N,i_O+deltaptosl+deltaptos3:int:i_0+
deltaptosl+deltaptos3+(ncol-1)*int) ;

% construccién de las matrices para aplicar el método
chi=[X;Xdeltat3];
chigorro=[Xdeltatl;Xdeltatldeltat3];

lastwarn(’’);
warning off MATLAB:singularMatrix
warning off MATLAB:nearlySingularMatrix

if width(chi)==height(chi)

% caso en el que la matriz chi sea cuadrada
invchi=chil\eye (2*N) ;
[modosaux,polosaux]=eig(chigorro*invchi) ;
polosaux=diag(polosaux) ;

disp(’La matriz chi resultante es cuadrada’)
else

% caso en el que la matriz chi no sea cuadrada
invchichiT=(chi*chi.’)\eye (2x*N) ;

[*, warn_id]=lastwarn; % capta si la matriz construida puede dar lugar a
% mal condicionamiento numérico
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if isequal(warn_id,’MATLAB:singularMatrix’) | isequal(warn_id, ’MATLAB:
nearlySingularMatrix’)

varargout{1}=1;

% si queremos que nos avise de que hay mal condicionamiento numérico sin

% mostrar warnings por pantalla

fprintf ([’El condicionamiento de la matriz ’,[char(967),char(967)],’"T
es %d \n’],rcond((chi*chi.?’)))

end

[modosaux,polosaux]=eig(chigorro*chi.’*invchichiT) ;

P g g

polosaux=diag(polosaux); % extrae autovalores de la diagonal principal
end

polos=log(polosaux)/deltatl; % ecuacidén para calcular polos del sistema
a partir de autovalores

[polos,idx]=sort(polos, ’ComparisonMethod’,’abs’); % ordena pares de
polos segin su médulo de menor a mayor

warning on MATLAB:singularMatrix
warning on MATLAB:nearlySingularMatrix

modos=[modosaux(1:N,idx) ./modosaux(N,idx) ;modosaux (N+1:2x*N,idx) ./
modosaux (2*N,idx)];

% se normalizan los modos respecto su Gltima componente para cada mitad

% inferior y superior de la matriz

end

A.3 Obtencion del MCF

Codigo A.3 Funcién para calcular el MCF de los polos y modos obtenidos.

function MCF=ModalCF (modos,polos,deltatau_s)

% Esta funcidn obtiene el Modal Confidence Factor (MCF) de los modos y
polos del

% sistema hallados mediante el ITD. Para aplicar el método son
necesarios los

% siguientes parametros de entrada.

% modos: modos obtenidos al aplicar ITD

% polos: polos obtenidos al aplicar ITD

% deltatau_s: vector fila que contiene los desfases de las
pseudoestaciones con

% respecto a la estacidn real. En caso de no haber no lo hace.

% La funcién devuelve:

% MCF: modal confidence factor para cada autovalor obtenido
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M=width(modos); % Estaciones totales del sistema

p=0.5%M/(length(deltatau_s)+1); % cantidad de estaciones reales del
sistema

if deltatau_s(1)==0

p=0.5%M;

end

MCF=2%ones(M,1); % hay un modal confidence factor por modo del sistema

for r=1:M %, recorre los M modos (columnas)
for n_est=1:length(deltatau_s) J recorre las pseudoestaciones afi
adidas
for ii=1:p % recorre las componentes ii de los modos
asociadas a las p medidas reales (filas)
Qbarraexp=modos (ii,r)* (exp(polos(r)*deltatau_s(n_est)));
% deltatau(n_est) cambia el deltatau cuando cambia la
pseudoestacidén analizada
Qbarra=modos(ii+n_est*p,r);
if abs(Qbarraexp)/abs(Qbarra)<i
MCFaux=abs (Qbarraexp/Qbarra) ;
else
MCFaux=abs (Qbarra) /abs (Qbarraexp) ;
end
% compara el MCF calculado para la componente de un modo
con el menor hasta ese momento
if MCFaux<MCF(r,1)
MCF (r,1)=MCFaux;
end
end
end
end
end

A.4 Obtencion y representacion del MAC

Codigo A.4 Funcion para calcular matriz MAC y mostrar su grafica 2D.

function [MSCC] = ModeSCC(modosA,modosB)

% ModeSCC Esta funcidén calcula el Modal Assurance Criterion entre dos
conjuntos de modos

% Los parametros de entrada son:

% modosA: modos identificados en el ensayo A / modos de referencia

% modosB: modos identificados en el ensayo B

MSCC=zeros (size (modosA,2) ,size(modosB,2)); % inicializacién del MSCC
for ii=1:size(modosA,2) % recorre las columnas de la matriz de modos del
ensayo A
for jj=1:size(modosB,2) J recorre las columnas de la matriz de modos
del ensayo B
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num=abs (modosA(:,ii) . *conj(modosB(:,jj))); % numerador del MSCC
den=(modosA(:,ii).’*conj(modosA(:,ii)))*(modosB(:,jj). > *conj(
modosB(:,jj))); %denominador del MSCC
MSCC(ii,jj) = (num~2)/den;
end
end

% Representacion 2-D del MAC
figure;
h = bar3(MSCC, 1); % grafico barras 3D sin espacio entre ellas

n = 256; % Cantidad de filas del mapa de colores a usar

cmap = flipud(gray(n)); % el mapa de color gray va de negro a blanco,
flipud lo invierte

colormap(cmap); % Aplica el colormap a la figura actual

hcolormap(sky); % define mapa de colores de blanco a azul

colorbar; % barra de colores graduada de O a 1 junto a grafica
clim([0 1]) % limita los valores de la barra de colores

% Asignar color segin MSCC
for k = 1:length(h)
zdata = get(h(k),’ZData’);
set(h(k), ’CData’, zdata);
end

view(0,90) % vista 2D

set(gca, ’FontSize’,22)

ejes=gca;

ejes.TickLength = [0 0]; % no marca ticks en graficas

axis equal

grid off

x1im([0.5 ii+0.5])

ylim([0.5 ii+0.5])

xlabel (’Modo asociado’,’Interpreter’,’latex’,’FontSize’,28)
ylabel(’Modo asociado’,’Interpreter’,’latex’,’FontSize’,28)
ejes.XAxisLocation="top’;

end
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