

Equation Chapter 1 Section 1

Trabajo Fin de Grado

en Ingeniería de las Tecnologías de Telecomunicación

Implementación de un alcoholímetro mediante

Raspberry Pi

Autor: Pablo Zurbano Canela

Tutor: Bernardo Palomo Vázquez

Dpto. de Ingeniería Electrónica

Escuela Técnica Superior de Ingeniería

Universidad de Sevilla

 Sevilla, 2025

iii

Trabajo Fin de Grado

en Ingeniería de las Tecnologías de Telecomunicación

Implementación de un alcoholímetro mediante

Raspberry Pi

Autor:

Pablo Zurbano Canela

Tutor:

Bernardo Palomo Vázquez

Profesor titular

Dpto. de Ingeniería Electrónica

Escuela Técnica Superior de Ingeniería

Universidad de Sevilla

Sevilla, 2025

v

Trabajo Fin de Grado: Implementación de un alcoholímetro mediante Raspberry Pi

Autor: Pablo Zurbano Canela

Tutor: Bernardo Palomo Vázquez

El tribunal nombrado para juzgar el Proyecto arriba indicado, compuesto por los siguientes miembros:

Presidente:

Vocales:

Secretario:

Acuerdan otorgarle la calificación de:

Sevilla, 2025

El Secretario del Tribunal

vii

A mi familia,

A mis amigos,

A mis maestros,

A mí mismo.

ix

Agradecimientos

A los profesores que han formado parte de mi educación académica, porque todos ellos, en mayor o menor

medida, también son responsables de este documento, en especial a Bernardo, por confiar en mí para llevar a

cabo este trabajo de fin de grado y acompañarme en esta última etapa de la carrera.

A mis compañeros de carrera, en especial a Adri y Chelo, gracias por todos los mensajes intercambiados

intentando dar solución a problemas que parecía que no la tenían, gracias por el apoyo que habéis sido sobre

todo en esas asignaturas que tantas convocatorias nos han supuesto, tenéis gran culpa de que estos años hayan

sido más llevaderos.

A Sale, Macarena y Valle, por pensar siempre en mi en época de exámenes, por desearme siempre suerte y por

demostrarme tanto cariño desde pequeño.

A mis amigos de toda la vida, Manu, Jorge, Trujillo, Laura y Josema, gracias por darme ese empujón necesario

en los momentos duros, nada me hace más feliz que poder celebrar juntos cada uno de nuestros logros.

A mi padre, a mi madre y a mi hermano, gracias por la educación que me habéis dado, por construir la persona

que soy y por soportar siempre con una sonrisa el esfuerzo económico y emocional que ha supuesto esta etapa,

sin vosotros habría sido imposible.

A ti Pablo, por escoger este reto, por trabajar, por nunca tirar la toalla. El camino se nos ha hecho más largo de

lo que esperábamos en un principio, pero al final lo hemos conseguido.

Gracias Pablo, por confiar en el proceso.

Pablo Zurbano Canela

Sevilla, 2025

xi

Resumen

El presente Trabajo de Fin de Grado aborda el diseño e implementación de un alcoholímetro de bajo coste basado

en una Raspberry Pi 4 Model B y un sensor de gas MQ-3. El objetivo principal ha sido desarrollar un sistema
capaz de medir la concentración de alcohol en aire espirado, procesar la señal y mostrar los resultados en una

interfaz web sencilla e intuitiva.

Para solventar la ausencia de entradas analógicas en la Raspberry Pi, se ha incorporado el conversor analógico-
digital MCP3008, el cual permite digitalizar la señal analógica que aporta el sensor y transmitirla mediante el

protocolo SPI. Tras la implementación del esquema eléctrico de conexiones, se ha desarrollado un código en

Python que gestiona la calibración del sensor, el procesamiento de datos y la conversión de voltajes en
concentraciones estimadas de etanol expresadas en mg/L. Los datos más relevantes de cada medición son

almacenados en un fichero CSV, permitiendo así la consulta de un historial de mediciones en todo momento.

La interfaz web, implementada con el microframework web Flask, ofrece al usuario un entorno simple para

realizar pruebas en tiempo real y visualizar los datos. Tras una primera calibración del sensor en aire limpio, se
incluyen funcionalidades como: el registro del nombre del usuario, la medición de la cantidad de alcohol en aire

y el acceso a un historial de resultados previos.

Los experimentos realizados con distintas bebidas alcohólicas han mostrado una respuesta coherente del sistema,
aunque con limitaciones propias del sensor MQ-3, el cual se muestra sensible a factores externos como

temperatura, humedad o vapores interferentes. Estos resultados, aunque no permiten un uso médico ni legal del

prototipo, validan su utilidad como herramienta educativa y de concienciación, además de demostrar la

viabilidad de la integración de sensores de bajo coste con plataformas de desarrollo accesibles como la Raspberry

Pi.

En conclusión, este trabajo evidencia que se ha alcanzado el objetivo fundamental de poner en funcionamiento

un sistema completo que combina electrónica, programación y desarrollo web, y que sienta las bases para futuras
mejoras mediante sensores más avanzados, métodos de calibración más rigurosos y mecanismos de soplado

controlados.

xiii

Abstract

This Final Degree Project addresses the design and implementation of a low-cost breathalyzer based on a

Raspberry Pi 4 Model B and an MQ-3 gas sensor. The main objective has been to develop a system capable of

measuring alcohol concentration in exhaled air, processing the signal, and displaying the results through a simple

and intuitive web interface.

To overcome the absence of native analog inputs in the Raspberry Pi, the MCP3008 analog-to-digital converter

has been incorporated, enabling the digitization of the sensor’s analog signal and its transmission via the SPI
protocol. After implementing the electrical connection scheme, a Python program was developed to handle

sensor calibration, data processing, and the conversion of voltages into estimated ethanol concentrations

expressed in mg/L. The most relevant data from each measurement are stored in a CSV file, allowing the

consultation of a complete history of measurements at any time.

The web interface, implemented using the Flask micro-framework, provides users with a straightforward

environment to perform real-time tests and visualize data. After an initial calibration of the sensor in clean air,

the system includes functionalities such as user registration, alcohol measurement in exhaled air, and access to

a history of previous results.

Experiments carried out with different alcoholic beverages showed consistent system responses, although with

the inherent limitations of the MQ-3 sensor, which is sensitive to external factors such as temperature, humidity,
and interfering vapors. While these limitations prevent the prototype from being used for medical or legal

purposes, the results validate its utility as an educational and awareness tool, while also demonstrating the

feasibility of integrating low-cost sensors with accessible development platforms such as the Raspberry Pi.

Finally, this work shows that the fundamental objective has been achieved: implementing a complete system
that combines electronics, programming, and web development, and laying the groundwork for future

improvements through more advanced sensors, stricter calibration methods, and controlled blowing

mechanisms.

xv

Índice

Agradecimientos ix

Resumen xi

Abstract xiii

Índice xv

Índice de Tablas xviii

Índice de Figuras xx

Notación xxii

1 Introducción 1
1.1 Contexto y motivación 1
1.2 Planteamiento del problema 3
1.3 Objetivo 3

2 Marco teórico 7
2.1 Sensores de detección de gas 7

2.1.1 Fundamentos de los sensores MOS 7
2.1.2 El sensor MQ-3 8

2.2 Conversión analógico-digital (ADC) y comunicación SPI 11
2.2.1 El conversor MCP3008-I/P 11
2.2.2 Comunicación SPI 12

2.3 La Raspberry Pi 13
2.3.1 Hardware 13
2.3.2 Software 14

2.4 Desarrollo de aplicaciones web y gestión de datos 15
2.4.1 Flask: Un microframework para interfaces web 15
2.4.2 Almacenamiento de datos: el formato CSV 15

3 Implementación del sistema 17
3.1 Arquitectura general del sistema 17

3.1.1 El módulo del sensor 17
3.1.2 El módulo del procesamiento 17
3.1.3 El módulo de la interfaz 17

3.2 Esquema eléctrico y conexiones 17
3.2.1 Configuración básica 18
3.2.2 Conexiones del sistema al completo 20

3.3 Implementación del código e interfaz web 23
3.3.1 calibrateTFG.py 23
3.3.2 appTFG.py 23
3.3.3 Interfaz web 24

4 Resultados 29
4.1 Metodología experimental 29
4.2 Observaciones en aire limpio 29
4.3 Respuesta frente a diferentes tipos de alcohol 31

5 Conclusiones y mejoras 35
5.1 Análisis de la precisión y limitaciones 35
5.2 Futuras mejoras 35
5.3 Conclusión final 36

Anexo A: código calibrateTFG.py 39

Anexo B: código appTFG.py 43

Anexo C: Carpeta templates 52

Referencias 61

xvii

ÍNDICE DE TABLAS

Tabla 1. Resultados de pruebas experimentales 32

xix

ÍNDICE DE FIGURAS

Figura 1. Tasas de alcoholemia de la DGT 1

Figura 2. Tasas de alcoholemia de las bebidas más habituales 2

Figura 3. Curva de Widmark 3

Figura 4. Parte frontal del sensor MQ-3 8

Figura 5. Parte trasera del sensor MQ-3 8

Figura 6. Curva típica de sensibilidad 10

Figura 7. Conversor MCP3008 I/P 11

Figura 8. Diagrama de tiempos del protocolo SPI del MCP3008-I/P 12

Figura 9. Raspberry Pi 1 Model A & Model B 13

Figura 10. Raspberry Pi 4 Model B 14

Figura 11 . Carcasa protectora de la Raspberry Pi 4 14

Figura 12. Configuración básica - Esquema de conexiones 18

Figura 13. Configuración básica - Alimentación y HDMI 19

Figura 14. Configuración básica - Ratón, teclado y RJ45 19

Figura 15. Configuración completa - Esquema de conexiones 21

Figura 16. Configuración completa 21

Figura 17. Configuración completa - Breadboard ampliada 22

Figura 18. Configuración completa - Raspberry Pi ampliada 22

Figura 19. Vista inicial previa al soplado 25

Figura 20. Vista de preparación para el soplado 25

Figura 21. Vista de soplado 25

Figura 22 . Vista resultado medición 26

Figura 23. Vista historial mediciones 26

Figura 24 . Salida del archivo calibrateTFG.py 30

xxi

Notación

MOS Semiconductor de óxido metálico

∝ Inversamente proporcional

ppm Partes por millón

ADC Conversor analógico digital

.csv Comma Separated Values

SPI Serial Peripheral Interface

SCLK Serial Clock

MOSI Master Out Slave In

MISO Master In Slave Out

CS/SS Chip Select / Slave Select

GPIO General Purpose Input/Output

HDMI High-Definition Multimedia Interface

HTML HyperText Markup Language

CSS Cascading Style Sheets

VCC Voltaje de corriente continua

GND Ground

AOUT Analogic output

DOUT Digital output

VREF Voltaje de referencia

xxiii

1

1 INTRODUCCIÓN

1.1 Contexto y motivación

El alcoholímetro es un instrumento que se utiliza para detectar el nivel de alcohol en aire espirado por una

determinada persona, su uso es especialmente relevante en el ámbito de la seguridad vial, ya que la conducción
bajo los efectos del alcohol representa una de las principales causas de accidentes de tráfico, lesiones graves y

muertes en carretera. En España según una noticia publicada por la Dirección General de Tráfico (DGT) el 20

de marzo de 2025, el alcohol está presente entre el 30% y el 50% de los accidentes mortales, siendo uno de los

factores de riesgo más significativos en siniestralidad vial [1].

Además, según datos de la OMS el consumo de alcohol está vinculado a más de 3 millones de muertes anuales

en todo el mundo [2], lo que lo convierte en uno de los principales factores de riesgo en siniestralidad vial [3].

En la mayoría de los países europeos, existen límites legales definidos para regular así las concentraciones

máximas permitidas de alcohol en aire espirado en diferentes tipos de conductores. En el caso de España, el

límite para los conductores en general es de 0.25 mg/L, reduciéndose a 0.15 mg/L para conductores noveles y

profesionales [1].

Figura 1. Tasas de alcoholemia de la DGT

La tasa de alcoholemia, que se corresponde con la concentración de alcohol en sangre, no es una constante

universal y puede variar significativamente entre personas, incluso ante consumos similares. Estas diferencias
hacen que confiar en las "sensaciones personales" sea arriesgado, especialmente en el momento en el que hay

que ponerse al mando de un vehículo. La recomendación más segura, respaldada por los organismos de

seguridad vial, es evitar completamente el consumo de alcohol si se tiene previsto conducir, lo que equivale a la

He hecho esta carta más larga de lo usual porque no

tengo tiempo para hacerla más corta.

- Blaise Pascal -

 Introducción

2

famosa tasa de 0,0 g/l. [1]

Una vez ingerido el alcohol, este comienza por absorberse en el aparato digestivo, comenzando la fase

ascendente o de absorción. Se estima que entre un 20 % y un 25 % del alcohol se absorbe en el estómago,
mientras que la mayor parte de este se incorpora al organismo a través del intestino delgado. A partir de ahí, el

etanol pasa a la sangre, alcanzando su concentración máxima, conocido como fase meseta o como pico de

alcoholemia, generalmente entre 30 y 90 minutos después de la ingesta, en función de varios factores fisiológicos
y conductuales. Una vez alcanzado ese pico, comienza la fase de eliminación o fase descendente, en la que el

nivel de alcohol en sangre disminuye progresivamente a medida que el hígado lo metaboliza. Este proceso se

produce a un ritmo relativamente constante, aunque puede oscilar ligeramente en función de la actividad hepática
y el estado de salud del individuo. Como referencia, una persona con una tasa de alcoholemia de 1,0 g/L puede

necesitar entre 6 y 10 horas para reducirla por debajo del límite legal máximo permitido.

Hay una gran cantidad de variables que influyen sobre la tasa de alcoholemia y también en la velocidad a la que

se alcanza la misma. A continuación, se muestra una tabla con la tasa de alcoholemia aproximada de las bebidas

más habituales:

Figura 2. Tasas de alcoholemia de las bebidas más habituales

En los controles de alcoholemia se utiliza la determinación del alcohol en aire espirado utilizando una relación

que es constante y conocida (2001/1) entre el nivel de alcohol en sangre y el nivel en aire espirado [1].

El proceso de absorción y eliminación del alcohol en el cuerpo humano sigue una evolución característica que

puede representarse gráficamente mediante la denominada curva de alcoholemia (o curva de Widmark). Esta
curva muestra cómo varía la concentración de alcohol en sangre en función del tiempo, desde el momento que

lo ingerimos hasta su eliminación completa. Sin embargo, esta curva no es idéntica para todas las personas.

Existen variables como el sexo, el peso corporal, la edad, la genética, el estado del hígado o incluso el nivel de

hidratación influyen notablemente en su forma. De este modo, dos personas que consumen la misma cantidad

de alcohol pueden presentar tasas de alcoholemia muy distintas.

La comprensión de la curva de Widmark resulta especialmente útil en el contexto de la seguridad vial, ya que

3

3 Implementación de un alcoholímetro mediante Raspberry Pi

permite concienciar sobre cuánto tiempo puede permanecer una persona por encima del límite legal tras

consumir alcohol. [4]

En la curva se pueden observar 3 fases diferenciadas, la fase ascendente, la fase de meseta (que se corresponde

con el ya comentado pico de alcoholemia) y la fase descendente.

Figura 3. Curva de Widmark

1.2 Planteamiento del problema

Actualmente, los alcoholímetros homologados utilizados por las autoridades competentes se basan en

tecnologías avanzadas como sensores electroquímicos o espectroscopía por infrarrojo. Debido a la importancia

clave que supone la ingesta de alcohol en la seguridad vial, estos dispositivos están diseñados para ofrecer una
elevada precisión, fiabilidad y cumplimiento de estándares de calibración. Sin embargo, su coste tan elevado,

complejidad de fabricación y necesidad de mantenimiento periódico los hacen poco accesibles para aplicaciones

de carácter didáctico o experimental.

Ante los problemas especificados en el párrafo anterior, surge la idea del desarrollo de un alcoholímetro de bajo

coste, cuyo enfoque no pretende igualar la precisión ni fiabilidad de los equipos homologados, pero sí permite

un acercamiento práctico, en el entorno educativo, a conceptos como son la obtención y tratamiento de señales

con su posterior procesamiento, y la interpretación de esos datos en tiempo real.

1.3 Objetivo

El presente Trabajo de Fin de Grado propone el diseño e implementación de un sistema de medición de alcohol

en aire espirado mediante una Raspberry Pi 4, ayudándose de un sensor de gas tipo MOS (el MQ-3) para la
detección de etanol, y un conversor analógico-digital (el MCP3008) para la interpretación de señales analógicas,

ya que la Raspberry Pi carece de entradas analógicas propias.

Además de la parte electrónica, para aportar valor a la simple obtención de datos desde el sensor, se le ha
incorporado al sistema una interfaz web construida con el framework Flask, a través de la cual el usuario, tras

una calibración previa del sensor, puede introducir su nombre, realizar una prueba de soplado cronometrada y

 Introducción

4

visualizar el resultado de forma gráfica e intuitiva, indicando los valores legales impuestos por la Dirección

General de Tráfico. Por último, también se ha añadido un sistema que emula el funcionamiento de una base de

datos, almacenando el resultado de cada medición en un archivo .csv y mostrándolo en cualquier momento si el

usuario lo solicita.

Los objetivos específicos de este trabajo son los siguientes:

1. Diseñar e implementar el hardware de un sistema de detección de alcohol en aire espirado, integrando
una Raspberry Pi 4 con un sensor de etanol MQ-3 y un conversor analógico-digital MCP3008 para la

lectura de señales analógicas.

2. Desarrollar el software necesario para la lectura, procesamiento y conversión de las señales del sensor,
incluyendo la calibración inicial del sistema y la interpolación logarítmica para estimar la concentración

de alcohol.

3. Crear una aplicación web interactiva que permita al usuario introducir su nombre, gestionar el proceso

de soplado mediante una cuenta atrás, visualizar el resultado estimado de concentración de alcohol en

mg/L y comparar dicho resultado con los límites legales establecidos en España.

4. Implementar un sistema de registro de datos que almacene automáticamente la información relevante

(nombre del usuario, fecha, hora, voltaje leído y estimación en mg/L) en un archivo .csv para su

posterior análisis.

5. Verificar la funcionalidad y sensibilidad del prototipo mediante la realización de pruebas

experimentales con diferentes tipos de alcoholes, documentando los resultados obtenidos y evaluando

las limitaciones del sistema propuesto.

El punto clave de la medición reside en el sensor MQ-3, un componente electroquímico que varía su resistencia

interna en presencia de vapores de etanol. Sin embargo, la Raspberry Pi, al ser una plataforma digital, carece de

entradas analógicas directas para leer la señal continua que produce este sensor. Para evitar esta limitación, se
ha incorporado el conversor MCP3008. Este conversor analógico-digital (ADC) actúa como intermediario entre

el dominio analógico del sensor y el digital de la Raspberry Pi, traduciendo las variaciones de voltaje de salida

del sensor MQ-3 en datos que la Raspberry Pi pueda interpretar. Para la correcta conexión de todo este conjunto
de hardware (sensor, conversor, Raspberry Pi) se ha utilizado una placa de pruebas (breadboard) y los

correspondientes cables DuPont.

La calibración inicial del sistema es un paso importante para asegurar la precisión de las mediciones. Este primer

paso sirva para calcular un valor base de resistencia del sensor en aire limpio (Rs/Ro), de modo que en las
siguientes mediciones el sistema calcula la resistencia del sensor (Rs) y su relación con la resistencia base. La

conversión de esta relación a una concentración de alcohol se logra mediante una interpolación logarítmica

basada en las curvas características proporcionadas en el datasheet del sensor MQ-3, un proceso que traduce la

respuesta del sensor a una métrica comprensible.

Más allá de la adquisición de datos, el proyecto se compone de una aplicación web intuitiva utilizando el

framework Flask en Python 3. Esta interfaz permite al usuario interactuar directamente con el sistema: introducir
su nombre, seguir una cuenta atrás para soplar y visualizar en tiempo real una estimación de su concentración

de alcohol en miligramos por litro (mg/L). La aplicación compara este resultado con los límites legales de alcohol

en sangre establecidos en España, proporcionando una imagen visual inmediata mediante un sistema de colores

(verde, amarillo o rojo) dependiendo del nivel de alcohol detectado por el sensor. Como se ha comentado
anteriormente, estos resultados se registran automáticamente en un archivo .csv, el cual simula el funcionamiento

de una base de datos.

Este prototipo sienta las bases para el desarrollo de prototipos de bajo coste en el ámbito del (Internet de las
Cosas” (IoT), abriendo puertas a la exploración de diversas aplicaciones, promoviendo así la experimentación y

el aprendizaje en el campo de la electrónica y la programación. Gracias a la combinación de componentes

accesibles como la Raspberry Pi, el sensor MQ-3 y el conversor MCP3008, el sistema puede servir como base
para futuras mejoras o adaptaciones, ya sea mejorando el sensor utilizado o añadiendo otros sensores adicionales

que midan variables del entorno, optimizando el tratamiento de señales para mejorar así la precisión de las

lecturas realizadas, o bien añadiendo funcionalidades de conectividad como la transmisión de datos a través de

una red local o a una plataforma web.

5

5 Implementación de un alcoholímetro mediante Raspberry Pi

Cabe destacar que este proyecto se compone de diversas competencias adquiridas a lo largo del Grado en

Ingeniería de las Tecnologías de Telecomunicación como pueden ser el diseño electrónico, la programación de
sistemas embebidos, el tratamiento de señales, el desarrollo web, y el análisis de datos. Asimismo, supone un

caso práctico de como la ingeniería puede aplicarse a un problema real y socialmente relevante como es el

impacto del consumo de alcohol frente a la seguridad vial, haciendo también un ejercicio de responsabilidad

social acercando la tecnología a situaciones cotidianas que afectan directamente a las personas.

 Introducción

6

7

2 MARCO TEÓRICO

El diseño y la implementación de un sistema de detección de alcohol en aire espirado fundamentado en una
Raspberry Pi exige una comprensión de diversos principios en los campos de la electrónica, la sensórica, el

procesamiento de señales y la informática. En este capítulo se van a desglosar los principales fundamentos

teóricos que han sido necesarios para llevar a cabo las decisiones de diseño adoptadas a lo largo del proyecto.

2.1 Sensores de detección de gas

La detección de gases es un campo crucial en diversas aplicaciones, desde la seguridad industrial hasta el

monitoreo ambiental. Para llevar a cabo esta tarea, existen diferentes tipos de sensores, cada uno con sus propias

ventajas según el tipo de gas que se quiera detectar y las condiciones en las que se trabaje. El funcionamiento

básico de estos consiste en una parte sensora, dedicada a interactuar con el gas a medir, y una parte electrónica,

que transforma la señal a un formato legible. A continuación, se listan los principales tipos de sensores:

• Sensores electroquímicos (EC), como por ejemplo el Alphasense CO-B4.

• Sensores ópticos (OC), como por ejemplo el MiniPID 2.

• Sensores catalíticos (CS), como por ejemplo el Figaro TGS 6812.

• Sensores de infrarrojos (IR), como por ejemplo el Senseair S8.

• Sensores semiconductores (MOS), como por ejemplo el MQ-3.

2.1.1 Fundamentos de los sensores MOS

Los sensores de óxido metálico semiconductor (MOS) se suelen utilizar por su bajo coste y su alta sensibilidad.

Estos operan mediante la interacción entre la superficie activa de un material semiconductor, que suele ser

normalmente dióxido de estaño (SnO₂), y los gases que se encuentren presentes en el entorno.

La sensibilidad de los sensores MOS ha sido ampliamente estudiada, identificándose factores como la

temperatura de operación, la humedad relativa y la morfología superficial del material como determinantes en

su rendimiento [5][6].

Estos sensores se componen de un micro calentador que mantiene la superficie a temperaturas elevadas (200–

400 °C) para que se produzcan las reacciones de adsorción y las posteriores de oxidación o reducción en la

superficie del material [7].

En aire limpio, las moléculas de oxígeno se adsorben sobre la superficie del SnO₂, esto provoca que se capturen

los electrones libres de su banda de conducción y se aumente la resistencia eléctrica del material. En cambio,

cuando un gas reductor, como el etanol, entra en contacto con la superficie, esta reacciona con el oxígeno
adsorbido y libera esos electrones, disminuyendo así la resistencia del sensor. El resultado de esta variación es

proporcional a la concentración del gas en el ambiente, la cual se puede estimar mediante la relación entre

resistencia en presencia del gas (Rs) y resistencia en aire limpio (Ro) [8].

Esta relación, propia del sensor, se expresa como:

𝑅𝑠

𝑅𝑜
∝ (𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑐𝑖ó𝑛)−𝑘𝐺𝐴𝑆

donde k es una constante empírica directamente relacionada con el gas que se está midiendo.

Dicha relación, aunque a simple vista no pueda parecerlo, dibuja una curva logarítmica, ya que, si la

concentración de alcohol aumenta, Rs disminuye, por lo que Rs/Ro también disminuye. Además, la caída no es

 Marco teórico

8

uniforme porque al principio con pequeños incrementos de concentración se provocan grandes cambios en la

resistencia, pero conforme va aumentando, los cambios se van suavizando, lo que caracteriza a una curva

logarítmica. Esto explica el por qué los sensores MOS son muy sensibles a bajas concentraciones, pero menos

sensible a concentraciones más altas.

2.1.2 El sensor MQ-3

El sensor MQ-3, empleado en este trabajo, está optimizado para detectar vapores de etanol. Su rango de

detección se sitúa entre 0.05 mg/L y 10 mg/L de alcohol en aire, cubriendo el rango habitual de interés para

aplicaciones de concienciación vial o demostración educativa [9].

Figura 4. Parte frontal del sensor MQ-3

Figura 5. Parte trasera del sensor MQ-3

En la imagen de la parte frontal se pueden observar los 4 pines de los que dispone el sensor MQ-3.

• VCC: Pin destinado a la alimentación del dispositivo.

• GND: Pin destinado a la conexión a tierra.

• AOUT: Pin destinado a la salida analógica del sensor, su voltaje depende de la resistencia interna del

sensor Rs.

• DOUT: Pin destinado a la salida digital del sensor, indica 0 en ausencia de alcohol y 1 en cuanto la

concentración de este supera un umbral configurable por el potenciómetro situado en la parte trasera

del dispositivo.

Centrándonos en la señal analógica continua (AOUT), esta representa el comportamiento de la resistencia

interna del SnO2 frente a una resistencia de carga fija (RL), formando así un divisor de tensión. El voltaje de

salida resultante nos sirve para interpretar la concentración del gas.

9

9 Implementación de un alcoholímetro mediante Raspberry Pi

Esta señal, aunque no proporciona una precisión comparable a la de un alcoholímetro homologado, es

suficientemente sensible para mostrar diferencias evidentes entre mediciones en aire limpio y en aire cargado de

etanol.

Entre sus principales características se encuentran:

• Buena sensibilidad a etanol y alcohol etílico.

• Tiempo de respuesta rápido (5–15 segundos tras exposición).

• Larga vida útil en condiciones normales de uso.

• Bajo coste y amplia disponibilidad en el mercado.

No obstante, también presenta limitaciones importantes:

• Es poco selectivo: puede reaccionar ante otros compuestos orgánicos volátiles (COV) como acetona o

gasolina.

• Es bastante sensible a factores ambientales como humedad o temperatura.

• Necesita un período de precalentamiento antes de ofrecer lecturas fiables.

• Su lectura requiere calibración frente a muestras conocidas para aproximar ppm o mg/L.

La salida analógica de este sensor se manifiesta como un voltaje (Vout), el cual varía en relación directa con la
resistencia del propio sensor (Rs). Siendo Vcc el voltaje de alimentación, la relación entre Rs y Vout se puede

describir aplicando la Ley de Ohm según la fórmula del divisor de tensión:

𝑉𝑜𝑢𝑡 = 𝑉𝑐𝑐 ∙
𝑅𝐿

𝑅𝐿 + 𝑅𝑠

De esta expresión se puede obtener la resistencia del sensor Rs a partir del voltaje de salida medido para así

determinar la concentración de alcohol mediante la relación Rs/Ro:

𝑅𝑠 = 𝑅𝐿 ∙ (
𝑉𝑐𝑐 − 𝑉𝑜𝑢𝑡

𝑉𝑜𝑢𝑡
)

El datasheet del sensor proporciona las curvas de sensibilidad que establecen una correlación entre el cociente
Rs/Ro y la concentración de alcohol, expresada en partes por millón (ppm). Estas curvas son fundamentales para

el proceso de calibración y posterior conversión de la lectura del sensor en una concentración de alcohol

interpretable. En esta figura se pueden observar las curvas de sensibilidad del 𝐶2𝐻5𝑂𝐻 (etanol) en color azul, el

aire en color rojo, el 𝐶𝑂 (monóxido de carbono) en color verde y el 𝐻2 (hidrógeno) en color celeste,
comprobándose claramente la diferencia de reacción que provoca el etanol en el sensor con la practicamente

inexistente reacción que provocan los otros gases.

Para el uso en el código python de esta curva típica representada en el datasheet del sensor, se han tomado dos
puntos X(50,0.18) e Y(500,0.022). Con estos dos puntos, se consigue la ecuación de la recta, que teniendo en

cuenta que nos encontramos en una escala logarítmica sería así:

𝑙𝑜𝑔10(𝑌) = 𝑚 ⋅ 𝑙𝑜𝑔10(𝑋) + 𝑏

Donde X representa la concentración en ppm e Y la relación Rs/R0.

La pendiente m y la ordenada b se calcularía del siguiente modo:

𝑚 =
log10(𝑦1)−log10(𝑦0)

log10(𝑥1)−log10(𝑥0)
 𝑏 = log10(𝑦0) − 𝑚 ⋅ log10(𝑥0)

 Marco teórico

10

Figura 6. Curva típica de sensibilidad

Una vez obtenida la concentración en ppm, para realizar la conversión a mG/L se utiliza la ley de los gases

ideales:

𝑃𝑉 = 𝑛𝑅𝑇

Donde P es la presión, V el volumen, n número de moles, R es la constante de los gases ideales

(0.08205746mol⋅KL⋅atm) y T es la temperatura en Kelvin (K).

De esta fórmula podemos despejar la concentración molar, que se encuentra en unidades de mol/L:

𝑛

𝑉
=

𝑃

𝑅𝑇

Para convertirla en una concentración de masa (gramos/litro), la multiplicamos por el peso

molecular (PM) del etanol. El peso molecular es la masa de un mol de una sustancia, expresada

en gramos por mol (g/mol).

Concentración (g/L) = Concentración(mol/L) ⋅ 𝑃𝑀𝑒𝑡𝑎𝑛𝑜𝑙(g/mol)

Sustituyendo la expresión que obtuvimos de la ley de los gases ideales, asumiendo una presión

de 1 atm y dividiendo por 1000 para obtener mg/L, la fórmula queda así:

𝑚𝑔

𝐿
=

𝑝𝑝𝑚 ∙ 𝑃𝑀𝑒𝑡𝑎𝑛𝑜𝑙

𝑅 ∙ 𝑇 ∙ 1000

11

11 Implementación de un alcoholímetro mediante Raspberry Pi

2.2 Conversión analógico-digital (ADC) y comunicación SPI

En los sistemas electrónicos modernos, especialmente aquellos basados en microcontroladores o

microprocesadores como pueden ser Arduino, ESP32 o Raspberry Pi, la lectura de señales externas es una tarea
muy común. Estas señales, en muchos casos, son analógicas, ya que se utilizan para representar fenómenos

físicos (temperatura, luz, sonido o, en este caso, concentración de gases) mediante valores continuos en el tiempo

y en amplitud. Sin embargo, las computadoras y los sistemas digitales sólo pueden interpretar datos binarios.

Por este motivo, para poder trabajar con señales analógicas, es necesario transformarlas en valores digitales
mediante un dispositivo llamado conversor analógico-digital, conocido por sus siglas en inglés: ADC (Analog-

to-Digital Converter).[10]

A diferencia de otras plataformas como Arduino, la Raspberry Pi no dispone de entradas analógicas en sus pines
GPIO (General Purpose Input/Output). Lo que quiere decir que no puede leer directamente el voltaje variable

analógico proporcionado por sensores como el MQ-3 a través de su salida AOUT. [12]

Esta limitación crea la necesidad de utilizar un componente adicional que actúe como puente entre el mundo

analógico del sensor MQ-3 y el mundo digital de la Raspberry Pi: el ADC.

2.2.1 El conversor MCP3008-I/P

En este trabajo de fin de grado, se ha utilizado el MCP3008-I/P como la solución a la falta de entradas analógicas

en la Raspberry Pi. Se trata de un conversor analógico-digital (ADC) de 10 bits de resolución que ofrece 8

canales de entrada analógica independientes, esto permite digitalizar señales provenientes de uno o varios

sensores, en este caso solo recibirá la salida AOUT del MQ-3, de forma simultánea o secuencial.

Figura 7. Conversor MCP3008 I/P

La resolución de 10 bits del MCP3008-I/P supone que puede dividir la señal analógica en 210 niveles, lo que

equivale a 1024 valores discretos distintos, abarcando un rango de voltajes entre 0 V y una tensión de referencia

definida por el usuario (Vref). En este trabajo de fin de grado, el conversor se alimenta con 3.3 V, valor habitual
para que sea compatible con el mismo voltaje de alimentación de la Raspberry Pi. Esto significa que el menor

cambio que el conversor puede detectar en esta configuración, conocido como LSB (Least Significan Bit), es:

𝐿𝑆𝐵 =
𝑉𝑟𝑒𝑓

210
=

3.3 𝑉

1024
≈ 3.22𝑚𝑉

Esto proporciona una resolución suficiente para detectar pequeñas variaciones en la salida analógica del sensor

MQ-3, que pueden reflejar cambios sutiles en la concentración de etanol.

Además, en términos de consumo energético, el MCP3008-I/P es un componente eficiente y de bajo consumo,

 Marco teórico

12

ideal para aplicaciones alimentadas por batería o que requieren una huella energética reducida. [10]

2.2.2 Comunicación SPI

La comunicación entre el MCP3008-I/P y la Raspberry Pi se realiza de forma eficiente mediante el protocolo

Serial Peripheral Interface (SPI). Este es un protocolo de comunicación síncrono, full-duplex y de alta velocidad,
adoptado normalmente en sistemas embebidos para la transferencia rápida de datos entre un dispositivo maestro,

que en este caso sería la Raspberry Pi, y uno o varios dispositivos esclavos, en este caso el MCP3008-I/P. Fue

desarrollado originalmente por Motorola y se ha convertido en una de las interfaces más empleadas en

electrónica digital.

El protocolo SPI se caracteriza por utilizar cuatro líneas principales:

• SCLK: Es la línea de reloj, generada por el maestro (Raspberry Pi), que sincroniza todas las operaciones

de transferencia de datos.

• MOSI: Es la línea que permite transmitir datos desde el maestro hacia el esclavo.

• MISO: Es la línea que permite transmitir datos desde el esclavo hacia el maestro.

• CS/SS: Es una línea que el maestro utiliza para seleccionar con qué esclavo específico desea

comunicarse cuando hay múltiples dispositivos conectados al mismo bus.

En una comunicación SPI, por cada bit que el maestro envía a través de la línea MOSI, simultáneamente recibe

un bit desde el esclavo por MISO, todo ello sincronizado por el reloj generado en SCLK. Cuando la línea CS

está activa (en low mode, o estado bajo), el esclavo seleccionado responde a las instrucciones del maestro.

En este trabajo de fin de grado, la Raspberry Pi actúa como maestro SPI, enviando una secuencia de 3 bytes. De

este modo se solicita la conversión del canal correspondiente (en este caso, el canal 0 del MCP3008 al que está

conectado el pin AOUT del MQ-3), y recibiendo un valor de 10 bits que representa la medida analógica.

Figura 8. Diagrama de tiempos del protocolo SPI del MCP3008-I/P

En la figura 8 se puede observar el diagrama de una comunicación entre maestro y esclavo, extraída del datasheet

del MCP3008-I/P.

1. El CS se pone en nivel bajo para habilitar la comunicación.

2. El CLK marca el ritmo de la transferencia

3. 𝐷𝐼𝑁 representa a la entrada de datos, desde la Raspberry Pi hacia el MCP3008-I/P se envían 3

bytes:

▪ El primer byte representa un bit de inicio (00000001) indicando al MCP3008-I/P que

13

13 Implementación de un alcoholímetro mediante Raspberry Pi

se va a realizar una lectura.

▪ El segundo byte contiene codificados el modo de lectura y el número de canal a leer.

▪ El tercer byte se envía vacío. Es un byte de relleno o “dummy” que mantiene el reloj

SPI activo para permitir que el MCP3008-I/P pueda enviar la respuesta.

4. 𝐷𝑂𝑈𝑇 representa a la salida de datos, desde el MCP3008-I/P hacia la Raspberry Pi responde

también con 3 bytes:

▪ El primer byte se envía vacío, ya que al MCP3008-I/P todavía no le ha dado tiempo a

iniciar la conversión.

▪ El segundo byte contiene los dos bits más significativos del resultado de 10 bits, los
cuales se ubican en las posiciones de bits 0 y 1, que equivalen a los 2 bits menos

significativos del conjunto del byte.

▪ El tercer byte contiene los 8 bits menos significativo del resultado de 10 bits,

2.3 La Raspberry Pi

2.3.1 Hardware

La Raspberry Pi es un ordenador de placa única (SBC, por sus siglas en inglés, Single Board Computer), lo que
quiere decir que sus componentes están todos integrados en una sola placa. Aunque los primeros diseños fueron

de 2006, basados en el microcontrolador Atmel ATmega644, la fundación Raspberry Pi fue fundada en mayo

de 2009, teniendo como objetivo la promoción de la educación de los adultos y los niños, particularmente en el
campo de las computadoras, ciencias de la computación y temas relacionados sin que estos se preocuparan por

dañarla [11].

Figura 9. Raspberry Pi 1 Model A & Model B

En la figura superior se puede observar el primer modelo de Raspberry, cuyo lanzamiento comercial se produjo
en el año 2012 al precio de 40€. Esta versión inicial tenía un diseño básico en comparación con sus sucesoras,

carecía de puerto Ethernet, por lo que para su conexión a Internet requería de un adaptador Wi-Fi externo que

se conectaba por USB. Poseía 26 conectores GPIO, una salida de vídeo vía HDMI y un conector RCA para
vídeo compuesto, una salida de audio con un conector Jack de tipo 3.5 mm, un conector USB tipo A, un conector

específico para cámara y su alimentación era mediante cable micro-usb con una tensión de 5V. Respecto al

hardware, incluía un procesador Broadcom BCM2835 de un solo núcleo (Single-Core a 700MHz). Su memoria

 Marco teórico

14

RAM era de 256 MB y su gráfica era una VideoCore IV [11].

Figura 10. Raspberry Pi 4 Model B

Figura 11 . Carcasa protectora de la Raspberry Pi 4

En la figura 10 se puede observar la Raspberry Pi 4 Model B, el modelo que ha sido utilizado en este trabajo de

fin de grado, la cual fue presentada en junio de 2019 desde 35€ hasta 75€. Esta edición del dispositivo supone

un salto significativo tanto en rendimiento como en funcionalidades, convirtiéndola en una solución realista para
aplicaciones más exigentes que vayan más allá del ámbito educativo para el que se ideó en un principio. Su

arquitectura se basa en un procesador ARM de cuatro núcleos a 1.5GHz, se encuentra disponible en

configuraciones de memoria RAM de 2GB. 4GB y 8GB. Respecto a la conectividad, incluye dos puertos USB
3.0 y dos USB 2.0, una entrada RJ45, Wi-Fi doble banda (de 2.4GHz y 5GHz), Bluetooth 5.0, y dos salidas de

vídeo micro-HDMI con soporte para resoluciones de hasta 4K, posee 40 pines GPIO y un conector para cámaras,

se alimenta mediante un puerto USB-C con una tensión de 5V, en cuanto a la gráfica, posee una VideoCore VI
[11]. En la figura 11 se ha incluido una imagen de la carcasa que se incluye con la propia Raspberry Pi para

proteger a esta de golpes cubriéndola por completo.

2.3.2 Software

Más allá de sus múltiples mejoras en el apartado de hardware, es fundamental destacar una característica clave

como es el papel que juegan los propios usuarios del dispositivo, generando nuevas soluciones ingeniosas tanto

de hardware como de software basadas en la Raspberry Pi.

Una de las mayores fortalezas de la Raspberry Pi reside en su versátil ecosistema de software. Este dispositivo

no se limita a una única distribución, sino que es compatible con una amplia gama de sistemas operativos
basados en Linux, adaptados específicamente para su arquitectura ARM. Esta flexibilidad de software permite

que la Raspberry Pi se pueda adaptar a una amplia gama de aplicaciones y necesidades de proyecto de todo tipo.

15

15 Implementación de un alcoholímetro mediante Raspberry Pi

En el ámbito de la programación, la Raspberry Pi se ha convertido en una herramienta accesible especialmente

para aquellos que se inician en el desarrollo de sistemas embebidos y aplicaciones de software. Python, en

particular, se ha convertido en el lenguaje de programación por excelencia para la Raspberry Pi. Su sintaxis
sencilla y su curva de aprendizaje suave, combinadas con una gran oferta de librerías y módulos preexistentes

(como RPi.GPIO para el control de pines GPIO, spidev para la comunicación SPI, o matplotlib para la

visualización de datos, todos ellas utilizadas en este trabajo de fin de grado), simplifican enormemente la

interacción con el hardware y el desarrollo de la lógica de la aplicación.

2.4 Desarrollo de aplicaciones web y gestión de datos

2.4.1 Flask: Un microframework para interfaces web

Flask es una de las opciones para tener en cuenta a la hora de la creación de aplicaciones web. Se conoce como

un “microframework” ya que proporciona las características necesarias para desarrollar aplicaciones web,
otorgando a los desarrolladores elegir las bibliotecas y extensiones que más se adapten a sus necesidades. A

diferencia de frameworks más robustos, Flask está escrito en Python y no impone estructuras ni dependencias

excesivas, lo que lo convierte en una opción ideal para proyectos de pequeña a mediana escala y para sistemas

embebidos (como los basados en Raspberry Pi), donde los recursos pueden ser limitados y donde además se

valoran la simplicidad y el control total sobre la aplicación.

2.4.2 Almacenamiento de datos: el formato CSV

El almacenamiento de datos de diferentes mediciones es crucial para poder analizar diferentes tendencias de los

sistemas a lo largo del tiempo. Para la persistencia de estos datos, y como alternativa a las bases de datos

convencionales, se puede utilizar el formato CSV (Comma-Separated Values).

El formato CSV es un formato de texto plano donde cada fila es un registro y los valores pertenecientes a cada

fila están separados por un delimitador que comúnmente suele ser una coma. Esta estructura simple facilita la

lectura y escritura en el apartado de la programación. Por otra parte, dado que es un formato de texto plano, el
almacenamiento en CSV requiere de recursos de procesamiento y memoria en sistema muy escasos. A todo

esto, se suma su gran compatibilidad con Python, el cual ofrece módulos integrados que facilitan el trabajo con

este tipo de archivos.

 Marco teórico

16

17

3 IMPLEMENTACIÓN DEL SISTEMA

En este capítulo se va a desglosar las distintas fases del proceso de diseño e implementación del proyecto, desde
el diseño hasta la implementación práctica del mismo. El objetivo ha sido construir un prototipo funcional y

educativo que integre aspectos de electrónica, programación, desarrollo web y tratamiento de señales.

3.1 Arquitectura general del sistema

El diseño de la arquitectura del sistema se ha gestionado dividiendo el problema en 3 distintos módulos. Esto,
además de facilitar el desarrollo y la depuración, también permite la escalabilidad y adición de nuevas

funcionalidades en un futuro. El sistema se puede dividir a su vez en los siguientes tres subsistemas

interconectados: un módulo sensor, que es el que adquiere los datos, un módulo de procesamiento y lógica de

control, y un módulo de interfaz, que es el que ofrece los resultados al usuario.

3.1.1 El módulo del sensor

El módulo del sensor es el punto de entrada de la información física. Para este módulo se ha seleccionado el

sensor de gas MQ-3, un dispositivo de óxido de metal semiconductor (MOS) conocido por su alta sensibilidad

al etanol y su bajo coste. Este sensor, al interactuar con el vapor de alcohol, varía su resistencia eléctrica. Para
capturar esta variación, se ha incorporado un conversor analógico-digital (ADC) de 10 bits, el MCP3008, que

traduce la señal analógica del sensor en un valor digital que la Raspberry Pi pueda interpretar.

3.1.2 El módulo del procesamiento

El módulo del procesamiento es el cerebro del sistema. Se ha optado por la Raspberry Pi 4 por su equilibrio

entre potencia de procesamiento, bajo consumo de energía y amplio soporte de la comunidad. Su función es

múltiple:

• Recepción de la señal: Lee los valores digitales del MCP3008 a través de su interfaz SPI.

• Procesamiento de datos: Convierte los valores brutos del sensor en una concentración de ppm y

posteriormente esto a mg/L.

• Lógica de control: Gestiona el estado del sistema, controlando la cuenta atrás para el soplado o la

comparación de la medición obtenida con los umbrales legales establecidos por la DGT.

• Gestión de la base de datos: Registra automáticamente cada medición en archivos CSV incluyendo

varios datos de interés.

3.1.3 El módulo de la interfaz

Finalmente, el módulo de la interfaz facilita la interacción con el usuario y la visualización de los datos. Esta

interfaz cumple dos funciones principales:

• Medición en tiempo real: Permite al usuario realizar una medición de alcohol en aire espirado y obtener

los resultados en el momento.

• Historial de mediciones: Ofrece acceso a un registro de mediciones anteriores, permitiendo el

seguimiento de los distintos resultados a lo largo del tiempo.

3.2 Esquema eléctrico y conexiones

A continuación, en este apartado se detalla el esquema eléctrico y las conexiones específicas entre los

 Implementación del sistema

18

dispositivos.

Se van a mostrar las dos distintas configuraciones de conexión que se han debido llevar a cabo para el correcto

funcionamiento del sistema, diferenciando entre dos fases del trabajo de fin de grado:

3.2.1 Configuración básica

En primer lugar, antes de interactuar con los componentes electrónicos externos como son el MQ-3 y el

MCP3008M es necesario programar y depurar el código del módulo de procesamiento y la interfaz web. Para

ello, es necesaria una configuración básica que se presenta a continuación:

3.2.1.1 Componentes necesarios

• Raspberry Pi 4

• Teclado

• Ratón

• Monitor

• Cables para conexiones (USB, alimentación, HDMI y RJ45)

3.2.1.2 Interconexiones realizadas

Figura 12. Configuración básica - Esquema de conexiones

19

19 Implementación de un alcoholímetro mediante Raspberry Pi

Figura 13. Configuración básica - Alimentación y HDMI

Figura 14. Configuración básica - Ratón, teclado y RJ45

Nota: La conexión con la red es necesaria en esta primera configuración para la descarga de las librerías utilizadas en el código Python.

 Implementación del sistema

20

3.2.2 Conexiones del sistema al completo

En segundo lugar, para el montaje del sistema al completo, se han realizado las siguientes interconexiones con

los demás elementos.

• Interconexión con el Sensor MQ-3: El encapsulado del sensor MQ-3 tiene pines para VCC

(alimentación), GND (tierra), DOUT (salida digital) y AOUT (salida analógica).

o VCC: Se conecta al pin 2 (5V) de la Raspberry Pi.

o GND: Se conecta al pin 6 (GND) de la Raspberry Pi.

o AOUT: Proporciona una tensión variable en función de la cantidad de alcohol detectado en aire

espirado y se conecta a la entrada analógica CH0 del conversor MCP3008.

o DOUT: Se utilizó solo en la fase más temprana del proyecto por simplicidad, para comprobar

que el sensor funcionaba y respondía frente a una concentración de alcohol. Una vez se

confirmó que el sensor detectaba alcohol en aire espirado, este pin se dejó de utilizar para pasar
a utilizar el AOUT, ya que la salida digital nos ofrece muy poca información (0 si no detecta

alcohol o 1 si supera un umbral).

• Conexión del MCP3008: El MCP3008 se comunica con la Raspberry Pi a través del protocolo SPI, que

utiliza cuatro pines para el intercambio de datos. Además, también recibe la salida analógica del sensor

MQ-3.

o VDD: Se conecta al pin 2 (5V) de la Raspberry Pi para alimentar al chip.

o VREF: Se conecta al pin 1 (3.3V) de la Raspberry Pi para establecer la tensión de referencia

para la conversión.

o DGND: Se conecta al pin 6 (GND) de la Raspberry Pi para establecer la tierra digital.

o AGND: Se conecta a la tierra de la breadboard para establecer la tierra analógica.

o CLK (Clock): Se conecta al pin 23, GPIO 11 (SCLK) de la Raspberry Pi. Es el pin de reloj que

sincroniza la transferencia de datos en el protocolo SPI.

o DOUT (Data Out): Se conecta al pin 21, GPIO 9 (MISO) de la Raspberry Pi, por donde el

MCP3008 envía los datos de la conversión a la Raspberry Pi.

o DIN (Data In): Se conecta al pin 19, GPIO 10 (MOSI) de la Raspberry Pi, se utiliza por la

Raspberry Pi para enviar comandos al MCP3008.

o CS (Chip Select): Se conecta al pin 24, GPIO 8 (CE0) de la Raspberry Pi. Este permite a la

Raspberry Pi seleccionar el MCP3008 para iniciar la comunicación en el protocolo SPI.

o CH0 (Channel 0): Se conecta a la salida analógica (AOUT) del sensor MQ-3.

• Divisor resistivo a la entrada del MCP3008: Se ha optado por la implementación de un divisor resistivo

con resistencias de 20kΩ a la entrada del MCP3008 para poder alimentar el sensor MQ-3 con 5V. De
esta manera, el máximo valor que va a recibir el MCP3008 será 2.5V, protegiendo así la comunicación

con la Raspberry Pi que tolera como máximo 3.3V en sus entradas.

A continuación, se muestran las conexiones realizadas en esta configuración:

21

21 Implementación de un alcoholímetro mediante Raspberry Pi

Figura 15. Configuración completa - Esquema de conexiones

Figura 16. Configuración completa

 Implementación del sistema

22

Figura 17. Configuración completa - Breadboard ampliada

Figura 18. Configuración completa - Raspberry Pi ampliada

Nota: En el diagrama se obvian las conexiones con el ratón, el teclado e internet para simplificarlo.

23

23 Implementación de un alcoholímetro mediante Raspberry Pi

3.3 Implementación del código e interfaz web

El código del proyecto se divide en dos archivos distintos llamados calibrateTFG.py y appTFG.py

3.3.1 calibrateTFG.py

En este archivo se encuentra la lógica relacionada con la calibración del sensor MQ-3 para la obtención del valor

en ohmios de la resistencia de este en aire limpio. Este código se ejecuta mediante terminal de la siguiente

manera:

python3 calibrateTFG.py

Este código permite obtener el parámetro fundamental R0, necesario para la correcta interpretación de las

mediciones de alcohol en aire espirado.

El script utiliza la librería spidev para establecer la comunicación SPI con el convertidor analógico-digital
MCP3008. Este ADC es el encargado de transformar la señal analógica generada por el sensor MQ-3 en valores

digitales que pueden ser procesados por el sistema. La inicialización se realiza al comienzo del código,

configurando el canal y la velocidad de transferencia.

Se definen constantes que determinan el número de muestras a tomar, el intervalo entre lecturas y los valores

eléctricos del divisor resistivo. Estos parámetros aseguran que la calibración sea precisa y reproducible,

adaptándose a las características del sensor y del circuito y representando las conexiones físicas realizadas en la

breadboard.

El código implementa varias funciones que permiten:

• Leer el valor digital del ADC y, por tanto, el voltaje proporcionado por el sensor.

• Calcular el voltaje que cae en la resistencia del sensor y el correspondiente valor en ohmios de esta (Rs).

• Filtrar los valores atípicos mediante técnicas estadísticas, obteniendo así una estimación más fiel de la

resistencia base (R0).

La función principal de calibración toma 50 muestras en aire limpio con un intervalo de 0.5 segundos entre
muestras, calcula Rs en cada una y filtra los valores que se desvían más del 20% de la mediana. Finalmente,

devuelve la media de Rs y el voltaje medio, que se emplearán como referencia en el código posterior. Al ejecutar

el script, se inicia automáticamente el proceso de calibración y se muestran por consola los resultados obtenidos.

Una vez se obtiene el valor medio de R0, se guarda para utilizarlo como constante en el script de nombre
appTFG.py

3.3.2 appTFG.py

Una vez calculado el valor de la resistencia del sensor en aire limpio, tenemos los datos necesarios para realizar

el cálculo de alcohol en aire.

El archivo appTFG.py implementa una aplicación web basada en el framework Flask, cuyo objetivo es

gestionar el proceso de medición de alcohol en aire espirado utilizando un sensor MQ-3 conectado a un

convertidor analógico-digital MCP3008 mediante comunicación SPI. La aplicación permite la interacción con

el usuario a través de una interfaz web, facilitando la toma de mediciones, la visualización de resultados y el

almacenamiento de un historial de mediciones.

3.3.2.1 Inicialización y configuración

o Se importan las librerías necesarias para la gestión web (Flask), la comunicación con el

hardware (spidev), el manejo de datos (csv, datetime) y los cálculos matemáticos (math).

o Se configura la aplicación Flask y la clave secreta para la gestión de sesiones.

o Se inicializa la comunicación SPI con el MCP3008.

 Implementación del sistema

24

o Se definen las constantes físicas y eléctricas necesarias para el funcionamiento del sensor y el

circuito divisor de tensión.

3.3.2.2 Funciones de adquisición y procesamiento de datos

o Se implementan funciones para la lectura del sensor MQ-3 a través del MCP3008.

o Se desarrollan funciones para el cálculo de voltajes y resistencias en el circuito y también para

la conversión de la señal eléctrica en una estimación de la concentración de alcohol (mg/L)

mediante fórmulas físicas, pasando por el cálculo de ppm.

o Se incluye una función para interpretar el nivel de alcohol detectado, clasificándolo en

diferentes categorías (sin alcohol, bajo, medio, alto) y asociando un color para su visualización.

o Los resultados de cada medición se almacenan en un archivo CSV, permitiendo la consulta

posterior del historial.

3.3.2.3 Rutas y lógica web

o La aplicación define varias rutas que corresponden a las distintas etapas del proceso de

medición:

▪ Pantalla de inicio.

▪ Solicitud del nombre del usuario.

▪ Instrucción para soplar en el sensor.

▪ Ejecución de la medición y procesamiento de resultados.

▪ Visualización del resultado obtenido.

▪ Consulta del historial de mediciones.

o Cada ruta está asociada a una plantilla HTML, las cuáles se almacenan en la carpeta

“templates”, que facilita la interacción con el usuario.

3.3.2.4 Ejecución de la aplicación

o El archivo incluye la instrucción para ejecutar el servidor Flask en modo local, permitiendo el

acceso a la aplicación web desde un navegador.

3.3.3 Interfaz web

Para facilitar la interacción del usuario con el sistema, se ha desarrollado una interfaz web simple e intuitiva.

Esta interfaz se ha creado utilizando HTML, CSS y JavaScript básico, y se despliega en un servidor web local

basado en Flask ejecutado en la propia Raspberry Pi. La interfaz web sigue un diseño minimalista ya que el

objeto de esta no es hacer grandes florituras en cuanto a la parte del frontend, si no que priorizar la construcción
de una herramienta funcional, comprensible y accesible, que permita mostrar los resultados obtenidos en el

sensor.

Nota: Aunque el datasheet del sensor recomienda un tiempo de precalentamiento de al menos 24 horas para
alcanzar la máxima estabilidad térmica, en la práctica se ha optado por 8 horas de precalentamiento,

habiéndose observado que, tras varias horas de funcionamiento continuo, el valor del voltaje base efectivamente

disminuye, lo que permite al sensor una mayor precisión en las mediciones al disponer de un mayor rango de

medición.

Una vez iniciada la aplicación, en la primera pantalla se puede observar el voltaje base que se ha registrado, que

se obtiene de la media de todas las mediciones realizadas durante la ejecución del script calibrateTFG.py, y

la R0, que hace referencia al valor que toma la resistencia del sensor en aire limpio, necesaria para posteriormente

calcular la concentración de alcohol. Dicho valor de R0 se ha redondeado a 160000 Ω. También aparece un

input para introducir el nombre del usuario que se va a someter al soplado y el botón “SOPLAR”, que no se
activa hasta que no se rellena dicho input. Como botón adicional, aparece el botón de “Ver historial de

25

25 Implementación de un alcoholímetro mediante Raspberry Pi

mediciones”, permitiéndonos la opción de acceder directamente al listado de mediciones anteriores.

Figura 19. Vista inicial previa al soplado

En cuanto se introduce el nombre y se pulsa el botón “SOPLAR”, se muestra una pantalla con una cuenta

regresiva de 3 segundos que nos indica que nos preparemos para soplar.

Figura 20. Vista de preparación para el soplado

Tras esta pantalla, se muestra una segunda cuenta regresiva, esta vez de 10 segundos, la cual nos indica que
debemos soplar durante todo este tiempo. Internamente, el código le está indicando a la Raspberry Pi que

recupere los valores de voltaje que le está enviando el sensor a razón de 100 muestras cada 0.1 segundos.

Figura 21. Vista de soplado

 Implementación del sistema

26

Una vez realizada la medición, se nos muestra una vista en la que nos devuelve el voltaje medido, que vuelve a

ser la media de todos los valores recuperados en la cuenta regresiva de la vista anterior, comparado con el voltaje

base registrado en la calibración inicial del sensor y acompañado de la concentración estimada en mg/L.
Automáticamente cuando se realiza una medición, el programa almacena el nombre, fecha y hora, voltaje base,

voltaje medido, concentración en mg/L y nivel de alcohol en un archivo .csv. Además, podemos observar una

barra rellenada en función de la concentración medida. La barra dispone de dos líneas que determinan el límite
legal para las personas nóveles y el límite legal general según la ley española. En esta última pantalla también

se nos muestra el mismo botón de “Ver historial de mediciones”.

Figura 22 . Vista resultado medición

Si se pulsa el botón de “Ver historial de mediciones” en la primera o en la última pantalla, se redirigirá a una

vista donde se visualiza una tabla con todo el historial de mediciones. Como los datos se almacenan en un archivo

.csv, este historial de mediciones no se reinicia si el programa Python se parara por algún motivo.

Figura 23. Vista historial mediciones

27

27 Implementación de un alcoholímetro mediante Raspberry Pi

29

4 RESULTADOS

Una vez finalizado el diseño, la implementación del sistema y su integración completa, tanto a nivel de hardware
como de software, se procedió a llevar a cabo una fase de validación experimental. El objetivo principal de esta

sección no es solamente comprobar que el sistema funcione, sino también evaluar en qué medida cumple con

los objetivos definidos en el capítulo introductorio y cómo se comporta frente a distintas concentraciones de

etanol.

4.1 Metodología experimental

El entorno de pruebas ha sido controlado lo máximo posible, intentando mantener una temperatura constante,

evitando corrientes de aire, fuentes de calor cercanas y la presencia de otros vapores que pudieran interferir con

el sensor de etanol MQ-3.

El primer paso ha consistido en asegurar un calentamiento suficiente del sensor. Como se explicó en el capítulo

anterior, la calibración requiere obtener la resistencia del sensor en aire limpio (Ro), valor de referencia

fundamental para las estimaciones posteriores. Esto se consigue realizando medidas en aire limpio una vez haya

transcurrido un tiempo de calentamiento previo, el cual se estableció en 8 horas.

Tal y como se explicó en el capítulo anterior, en una fase muy temprana del trabajo de fin de grado, se conectó

la salida digital del sensor directamente a una de las entradas de la Raspberry Pi (para ello el sensor se alimentó
con 3.3V, evitando así dañar la Raspberry Pi) para comprobar el correcto funcionamiento de este. Tras acercar

un tapón impregnado en alcohol al sensor se obtuvo un “1” en la Raspberry Pi, lo que significaba que el sensor

detectaba correctamente el alcohol en aire.

Con esta primera prueba de aproximación hecha, se comenzó a trabajar para obtener valores provenientes de la
salida analógica del sensor, para lo cual hubo que conectar antes de la Raspberry Pi el MCP3008 ya que como

se ha comentado también anteriormente, la Raspberry Pi carece de entradas analógicas. Además, se protegió la

entrada del MCP3008 con un divisor resistivo tal y como se ha comentado en el capítulo anterior

Con todos los elementos del sistema interconectados, se pasó a la siguiente fase de pruebas, que consistía en la

validación de la salida analógica del sensor MQ-3. Para validar dicha salida se realizaron distintas pruebas, las

cuales consistían en acercar un tapón impregnado en varios tipos de bebidas, que fueron:

• Cruzcampo Pilsen

• Ron Barceló

• Vino tinto Fidencio

• Ginebra Exótica 1890

• Anís Marie Brizard

• Licor Barceló Cream

• Vermouth Rojo Gaztelu

• Zumo de naranja exprimido

• Aire limpio

4.2 Observaciones en aire limpio

Antes de realizar cualquier medición en presencia de alcohol, se registraron datos de referencia en condiciones
de aire completamente limpio. El sistema fue probado en una habitación sin ventilación directa de productos

químicos, perfumes o vapores.

 Resultados

30

El valor de voltaje medido por el sensor MQ-3 en estas condiciones se situó alrededor de los 0.5 V, que se

correspondía con unos 4V en la resistencia de este, lo que se tradujo, tras el proceso de conversión mediante el

ADC MCP3008 y el uso de la interpolación logarítmica basada en el datasheet del sensor, en una concentración
estimada de 0.00 mg/L. Esta lectura se mantuvo estable con ligeras oscilaciones (de unas pocas décimas de mV),

lo cual es coherente con las especificaciones de sensibilidad del sensor y evidencia una buena respuesta frente a

un entorno sin presencia de alcohol. Estos valores indican que el valor de RS en aire limpio se situaba en torno

a los 160000Ω, valor que se utilizó redondeado para las mediciones posteriores de alcohol.

Estos datos se obtuvieron tras ejecutar el archivo calibrateTFG.py. Los resultados se exportaron a un txt y

se presentan a continuación:

Figura 24 . Salida del archivo calibrateTFG.py

31

31 Implementación de un alcoholímetro mediante Raspberry Pi

4.3 Respuesta frente a diferentes tipos de alcohol

Una vez comprobada la estabilidad del sistema en aire limpio, se procedió a realizar pruebas reales exponiendo

el sensor a vapores de diferentes bebidas alcohólicas comunes. Las mediciones se realizaron colocando los
tapones de las botellas cerca del sensor, a una distancia inferior a 5 cm, manteniendo la exposición durante 10

segundos. Durante ese tiempo, el sistema adquirió muestras consecutivas y generó una media final de

concentración en aire espirado.

Se han utilizado distintos tipos de bebidas las cuales fueron cerveza (Cruzcampo - Pilsen, 4.8% vol.), vino tinto
(Fidencio, 13.5% vol.), vermouth rojo (Gaztelu, 15% vol.), licor destilado (Ron - Barceló, 37.5% vol.), ginebra

(Exótica 1890, 38% vol.), anís (Marie Brizard, 25% vol.) y licor crema (Barceló Cream, 17% vol.). Además, se

realizaron mediciones con aire limpio y zumo de naranja como control.

Los resultados obtenidos muestran una respuesta clara y creciente en función de la concentración alcohólica del

líquido. El voltaje de salida del sensor MQ-3 descendía notablemente en presencia de alcohol, lo que implica

una reducción en la resistencia Rs y, por tanto, un aumento en la estimación de etanol presente.

A continuación, se muestra una tabla con los resultados obtenidos:

 Resultados

32

N
o
m

b
re

F
ech

a
 y

 h
o
ra

V

o
lta

je

b
a
se (V

)

V
o
lta

je

(V
)

R
s (Ω

)
R

0
 (Ω

)
C

o
n

cen
tra

ció
n

(m
g
/L

)

N
iv

el

R
on

 - B
arceló (37.5%

 vol)
01/08/2025

20:34:32

3,9
97

0,7

62

718
7,043

160

000

0,431

N
ivel

alto

A
nís - M

arie B
rizard

 (25%
 vol)

01/08/202
5

20:39:50

3,997

1,128

11648,59

160000

0,254

N
ivel

m
edio

Licor - B
arceló

 C
ream

 (1
7%

 vol)
01/08/202

5
20:44:53

3,9

97

1,1
27

116

43
,43

160000

0,254

N
ivel

m
edio

C
ru

zcam
p

o
 - P

ilsen
 (4.8%

 vol)
tras 5 d

ías ab
ierta

01/08/202
5

20:49:32

3,9
97

3,2

77

760
91

,83

160000

0

Sin
alcohol

V
erm

ou
th

 R
ojo - G

aztelu
 (15%

vol)

01/08/202
5

20:54:01

3,9
97

1,2

35

131
14

,02

160000

0,223

N
ivel

bajo

V
in

o tin
to

 - Fid
en

cio
 (1

3.5%
 vol)

01/08/202
5

20:59:45

3,9
97

1,7

2

209
81

,61

160000

0,133

N
ivel

bajo

G
in

eb
ra - Exó

tica 1
89

0 (38%
 vol)

01/08/2025
21:04:29

3,9

97

0,7
97

758

6,154

160000

0,406

N
ivel

alto

Zu
m

o d
e n

aran
ja exp

rim
id

o

01/08/2025
21:09:33

3,9

97

3,9
4

148

725
,2

160000

0

Sin
alcohol

A
ire lim

pio

01/08/202
5

21:14:09

3,997

3,954

151145,6

160000

0

Sin
alcohol

Tabla 1. Resultados de pruebas experimentales

33

33 Implementación de un alcoholímetro mediante Raspberry Pi

35

5 CONCLUSIONES Y MEJORAS

5.1 Análisis de la precisión y limitaciones

Aunque el sistema mostró ser funcional y coherente con sus respuestas, es importante señalar que existen
diferentes limitaciones técnicas evidentes que afectan la precisión de las mediciones. El sensor MQ-3, como se

ha detallado anteriormente, está basado en tecnología MOS, lo que implica una sensibilidad alta pero también

una notable variabilidad frente a factores como temperatura, humedad o presencia de gases interferentes.

Además, al tratarse de un sensor de bajo coste, el MQ-3 no está calibrado de fábrica para lecturas legales ni

médicas, lo que significa que la conversión entre Rs/Ro y concentración en mg/L se basa en aproximaciones

obtenidas mediante interpolación logarítmica a partir de su hoja técnica. Esta metodología es válida en términos

educativos y experimentales, pero no sustituye a un procedimiento de calibración legal con patrones certificados.

Otra de las limitaciones observadas es la ausencia de control preciso del soplado. A diferencia de un

alcoholímetro profesional, que guía al usuario sobre la fuerza y duración del soplo, en este caso el proceso

depende de la regularidad con la que se expongan los vapores al sensor, lo que puede introducir variabilidad en

las mediciones.

Si nos fijamos en la Tabla 1. Resultados de pruebas experimentales¡Error! No se encuentra el origen de la

referencia., podemos observar que en el caso de la Cruzcampo - Pilsen (4.8% vol) tras 5 días abierta, en concreto,

se probó con un botellín que llevaba abierto varios días, esto sumado al calor de Sevilla, la ciudad en la que se

realizaron las pruebas nos hace sospechar que el alcohol de este se habría evaporado durante el tiempo que

transcurrió entre que se abrió dicho botellín y cuando se hizo la medición.

También, en la misma Tabla 1. Resultados de pruebas experimentales, podemos observar un caso donde a

priori, la concentración de alcohol medida no tiene correlación con la graduación de alcohol, y es el caso del

Licor - Barceló Cream (17% vol) y Anís - Marie Brizard (25% vol). Donde el segundo de ellos, con más graduación,

reporta prácticamente los mismos valores que el primero. Esta posible diferencia se achaca al tiempo que puedan

llevar abiertas ambas botellas, así como el dosificador de cada una de ellas, los cuales podrían provocar que se

traspasara menos aire al tapón con el que se realizaron las medidas y por tanto, repercutiría negativamente en las

mediadas realizadas por el sensor, pudiendo detectar menor cantidad de etanol en un caso u en otro.

5.2 Futuras mejoras

Por todo lo comentado en el punto anterior, se propone como futuras mejoras la utilización de un sensor de
mayor calidad que permitiera la detección más exacta y sin tanta variabilidad del etanol en aire. Adicionalmente,

para optimizar el diseño y la fiabilidad del sistema, se plantean las siguientes propuestas de mejora:

• Sustitución del sensor utilizado: El MQ-3 demuestra ser una opción adecuada para un prototipo de

bajo coste y fines educativos. Sin embargo, su funcionamiento basado en óxidos metálicos lo hace
bastante sensible a factores externos como la temperatura o la humedad. Esto introduce variaciones en

las lecturas, lo que limita su fiabilidad en contextos donde se requiera una precisión de mayor nivel.

Una primera línea de mejora consistiría en sustituir este sensor por otros de mayor calidad, como los
sensores electroquímicos específicos de etanol. Este cambio permitiría obtener mediciones mucho más

estables y reproducibles, con un margen de error considerablemente menor, aunque evidentemente no

podemos olvidarnos de que el coste del sistema aumentaría considerablemente.

• Implementación de un sistema de soplado controlado: A diferencia del acercamiento manual del

tapón al sensor, donde se carece de control sobre la intensidad, duración o caudal del soplo, factores que

influyen directamente en la cantidad de aire y vapor de etanol que alcanzan la superficie del sensor, otra

posible mejora sería incorporar una boquilla similar a la de los alcoholímetros profesionales. Para evitar

Conclusiones y mejoras

36

el tener que ingerir alcohol en cada prueba, esta boquilla se acoplaría a un sistema de ventilación

forzada, como un pequeño ventilador que garantizaría un flujo de aire constante y a un volumen

determinado conocido. Este método simularía de mejor manera las condiciones de soplado de un

alcoholímetro real, reduciendo así la variabilidad de cantidad de aire medido en cada prueba.

• Condiciones controladas: Para eliminar las variables observadas en las pruebas, como la evaporación

por el tiempo o el calor, las futuras pruebas se deberían en un entorno de laboratorio con temperatura y
humedad controladas. Si se usara el mismo sensor MQ-3 y fuera posible, se debería calibrar con el

tiempo de precalentamiento recomendado por el datasheet, de 24-48 horas para conseguir una menor

variabilidad en las mediciones. Además, se usarían botellas de bebidas alcohólicas homologadas y
precintadas que se abrirían justo antes de cada medición, garantizando así que la concentración de

alcohol de cada muestra sea la declarada por el fabricante y que las condiciones de las pruebas sean

idénticas para todos los casos.

• Gestión y almacenamiento de datos: En este proyecto, los resultados se almacenan en archivos CSV
y se visualizan en una interfaz web sencilla. Si bien esto es suficiente para el prototipo inicial y suma

funcionalidades al objetivo inicial de realizar una simple medición de alcohol, en el futuro podría

plantearse una base de datos (por ejemplo, SQLite). Si se mejoraran las condiciones de tal manera que
estuvieran controladas, se podría también almacenar no solo los resultados de las mediciones, sino

también las condiciones experimentales bajo las que se llevaron a cabo (temperatura, humedad, caudal

de soplado) proporcionando así datos más relevantes para un posterior análisis si fuese necesario.

5.3 Conclusión final

El sistema resultante, aunque no alcanza la exactitud de un alcoholímetro profesional, considero que consigue

lograr el objetivo planteado al inicio del trabajo de fin de grado, el cual consistía desarrollar e implementar un

sistema completo y funcional, integrando un sensor MQ-3 con una Raspberry Pi 4 para realizar mediciones de

etanol en aire, quedando demostrada la viabilidad de un sensor económico y una plataforma de bajo coste para

construir un prototipo operativo útil en el entorno educativo.

El trabajo de fin de grado no ha finalizado con la consecución del objetivo principal del mismo, sino que, gracias

a los conocimientos previos sobre programación adquiridos tanto en la carrera como en la vida laboral, se le han
añadido funcionalidades como una aplicación web en la que representar cada paso de la medición y un registro

de datos en .csv, el cual se podía consultar en la misma aplicación.

Finalmente, se concluye que se ha conseguido no solo poner en marcha el sistema, sino también ampliar

conocimientos en Python, la electrónica de sensores y la programación de módulos para la Raspberry Pi.

37

37 Implementación de un alcoholímetro mediante Raspberry Pi

39

39 Implementación de un alcoholímetro mediante Raspberry Pi

ANEXO A: CÓDIGO CALIBRATETFG.PY

Importaciones de librerías necesarias

import spidev, time

import statistics

Inicialización de la comunicación SPI para el ADC MCP3008

spi = spidev.SpiDev()

spi.open(0, 0)

spi.max_speed_hz = 1350000

Parámetros del sensor MQ-3 y del divisor resistivo

MUESTRAS_CALIBRACION = 50 # Número de muestras para calibrar

INTERVALO_CALIBRACION = 0.5 # Intervalo entre muestras (segundos)

RELACION_RS_RO_AIRE_LIMPIO = 1 # Relación Rs/R0 en aire limpio según la hoja de datos del MQ-3

R1 = 20000.0 # Resistencia 1 del divisor (Ohmios)

R2 = 20000.0 # Resistencia 2 del divisor (Ohmios)

VREF_ADC = 3.3 # Voltaje de referencia del ADC (V)

VCC_SENSOR = 5.0 # Voltaje de alimentación del divisor (V)

def read_adc(channel):

 adc = spi.xfer2([1, (8 + channel) << 4, 0])

 data = ((adc[1] & 3) << 8) + adc[2]

 return data

def leer_mq3():

 """

 Lee el valor analógico del sensor MQ-3 a través del ADC MCP3008.

 Devuelve el valor digital leído (0-1023).

 """

 adc = spi.xfer2([1, (8 + 0) << 4, 0])

 data = ((adc[1] & 3) << 8) | adc[2]

 return data

Anexo A: código calibrateTFG.py

40

def leer_media(muestras, delay):

 """

 Realiza varias lecturas del sensor y devuelve la media.

 Parámetros:

 muestras: número de lecturas a realizar

 delay: tiempo de espera entre lecturas (segundos)

 """

 total = 0

 for _ in range(muestras):

 total += leer_mq3()

 time.sleep(delay)

 return total / muestras

Llamamos B al punto medio del divisor resistivo (entre R1 y Rs)

def calcular_vB(vA):

 return 2 * vA

def calculate_rs(vA):

 return R1 * (VCC_SENSOR - 2 * vA) / vA

Llamamos Vsensor al voltaje que cae en la resistencia del sensor MQ-3 (Rs)

def calculate_v_sensor(adc_value):

 """

 Calcula el voltaje que cae en la resistencia del sensor MQ-3 (Rs) y el voltaje en nodo B (v_adc_5v)

 considerando el divisor con Rs (asumido o medido).

 """

 v_adc = adc_value * (VREF_ADC / 1023.0) # Voltaje que ve el ADC (0-3.3V)

 v_adc_5v = calcular_vB(v_adc)

 v_rs = VCC_SENSOR - v_adc_5v # Voltaje que cae en Rs

 return v_rs, v_adc, v_adc_5v

def calculate_r0():

 """

 Realiza la calibración del sensor en aire limpio para obtener R0 (resistencia base).

 Devuelve el valor de R0 calculado y el voltaje medio en Rs.

 """

41

41 Implementación de un alcoholímetro mediante Raspberry Pi

 rs_readings = []

 voltajes_rs = []

 for _ in range(MUESTRAS_CALIBRACION):

 adc_value = leer_mq3()

 v_sensor,v_adc,vb = calculate_v_sensor(adc_value)

 rs = calculate_rs(v_adc)

 print(f"Voltaje medido en MCP3008: {v_adc:.2f} | Voltaje en B {vb:.2f} | Voltaje que cae en el sensor

{v_sensor:.2f} V , por lo que RS = {rs:.2f} Ω")

 if rs is None or rs == 0.000:

 continue

 rs_readings.append(rs)

 voltajes_rs.append(v_sensor)

 time.sleep(INTERVALO_CALIBRACION)

 if not rs_readings:

 return None, None

 median_rs = statistics.median(rs_readings)

 threshold = 0.2 * median_rs

 filtered_indices = [i for i, x in enumerate(rs_readings) if abs(x - median_rs) <= threshold]

 # Se realiza filtrado eliminando los valores que estén fuera del 20% de la mediana

 filtered_rs = [rs_readings[i] for i in filtered_indices]

 filtered_voltajes = [voltajes_rs[i] for i in filtered_indices]

 # Imprimimos los valores filtrados

 print(rs_readings)

 if not filtered_rs:

 filtered_rs = rs_readings

 filtered_voltajes = voltajes_rs

 rs_mean = statistics.mean(filtered_rs)

 voltaje_mean = statistics.mean(filtered_voltajes)

 return rs_mean, voltaje_mean

if __name__ == "__main__":

 ro_mean,v_mean = calculate_r0()

 print(f"Media r0: {ro_mean:.3f}Ω | Media v en sensor: {v_mean:.3f}")

Anexo A: código calibrateTFG.py

42

43

43 Implementación de un alcoholímetro mediante Raspberry Pi

ANEXO B: CÓDIGO APPTFG.PY

from flask import Flask, render_template, request, redirect, url_for, session

import spidev, time

import csv

import math

from datetime import datetime

Importaciones de librerías necesariasa

Inicialización de la aplicación Flask

app = Flask(__name__)

app.secret_key = 'secret-key'

Inicialización de la comunicación SPI para el ADC MCP3008

spi = spidev.SpiDev()

spi.open(0, 0)

spi.max_speed_hz = 1350000

Parámetros del sensor MQ-3 y del divisor resistivo

RL = 20000.0 # Resistencia de carga (Ohmios)

MUESTRAS_CALIBRACION = 300 # Número de muestras para calibrar

INTERVALO_CALIBRACION = 0.1 # Intervalo entre muestras (segundos)

R1 = 20000.0 # Resistencia 1 del divisor (Ohmios)

R2 = 20000.0 # Resistencia 2 del divisor (Ohmios)

VREF_ADC = 3.3 # Voltaje de referencia del ADC (V)

VCC_SENSOR = 5.0 # Voltaje de alimentación del divisor (V)

Constantes para la conversión de ppm a mg/L de aire espirado

R_GAS = 0.08205746 # Constante de gases (L·atm)/(mol·K)

PESO_MOLECULAR_ETANOL = 46.07 # g/mol

TEMP_C = 25 # Temperatura ambiente (°C)

Anexo B: código appTFG.py

44

X0 = 50

Y0 = 0.18

X1 = 500

Y1 = 0.022

Calcular los puntos de la curva

PUNTO0 = (math.log10(X0), math.log10(Y0))

PUNTO1 = (math.log10(X1), math.log10(Y1))

SCOPE = (PUNTO1[1] - PUNTO0[1])/ (PUNTO1[0]-PUNTO0[0])

COORD = PUNTO0[1] -PUNTO0[0] * SCOPE

R0 = 160000

V_BASE = 3.997

--- ESQUEMA DEL CIRCUITO MQ-3 + MCP3008 ---

VCC: 5V

Conexiones:

- VCC (5V) -> AO (sensor MQ-3)

- AO (internamente posee Rs que es la resistencia del sensor MQ-3) -> NodoB

- NodoB -> R1 (20kOhm) -> NodoA

- NodoA -> R2 (20kOhm) -> GND

- NodoA -> CH0 (entrada MCP3008)

El divisor resistivo está formado por R1 y R2 (ambas de 20kOhm).

El MCP3008 mide el voltaje en NodoA.

Rs es la resistencia INTERNA variable del sensor MQ-3 (detecta alcohol).

--- FUNCIONES PRINCIPALES Y AUXILIARES ---

def leer_mq3():

 """

 Lee el valor analógico del sensor MQ-3 a través del ADC MCP3008.

 Devuelve el valor digital leído (0-1023).

 """

 adc = spi.xfer2([1, (8 + 0) << 4, 0])

 adc = spi.xfer2([1, (8 + 0) << 4, 0])

 data = ((adc[1] & 3) << 8) | adc[2]

45

45 Implementación de un alcoholímetro mediante Raspberry Pi

 return data

def leer_media(muestras, delay):

 """

 Realiza varias lecturas del sensor y devuelve la media.

 Parámetros:

 muestras: número de lecturas a realizar

 delay: tiempo de espera entre lecturas (segundos)

 """

 total = 0

 print(total)

 for _ in range(muestras):

 total += leer_mq3()

 print(total)

 time.sleep(delay)

 return total / muestras

def calculate_v_sensor(adc_value):

 """

 Calcula el voltaje que cae en la resistencia del sensor MQ-3 (Rs).

 El ADC mide el voltaje en el punto medio del divisor (entre R1 y Rs).

 Devuelve el voltaje en Rs (V).

 """

 v_adc = adc_value * (VREF_ADC / 1023.0) # Voltaje que ve el ADC (0-3.3V)

 v_b = v_adc * 2 # Por el divisor resistivo 20k/20k

 v_rs = VCC_SENSOR - v_b # Voltaje que cae en Rs

 return v_rs,v_adc

def calculate_rs(vA):

 return R1 * (VCC_SENSOR - 2 * vA) / vA

def measure(voltaje,channel=0):

 """

 Realiza la medición de alcohol:

 - Calcula Rs con el voltaje actual

 - Calcula la relación Rs/R0

 - Convierte a ppm y mg/L

 Devuelve la concentración de alcohol en mg/L.

Anexo B: código appTFG.py

46

 """

 rs = calculate_rs(voltaje)

 session['rs'] = rs

 r0 = session['r0']

 if rs<0 or rs>r0:

 rs=r0

 ratio=Y0

 else:

 ratio = rs/r0

 print(f"ratio: {ratio:.3f}")

 ppm = getConcentration(ratio)

 if ppm<X0:

 ppm=0

 mgL=0.0

 else:

 mgL = ppm_to_mgL_aire_espirado(ppm)

 return mgL

def ppm_to_mgL_aire_espirado(ppm, temp_c=TEMP_C):

 """

 Convierte ppm de etanol a mg/L de aire espirado usando constantes físicas.

 """

 T = temp_c + 273.15

 mgL = ppm * (PESO_MOLECULAR_ETANOL) / (R_GAS * T*1000)

 print(f"ppm: {ppm:.3f}")

 print(f"mgL: {mgL:.3f}")

 return mgL

def getConcentration(rs_ro_ratio):

 print(f"COORD: {COORD:.3f}")

 print(f"SCOPE: {SCOPE:.3f}")

 print(f"mathlog: {math.log10(rs_ro_ratio):.3f}")

 mathlog = math.log10(rs_ro_ratio)

 exponente = (mathlog-COORD)/SCOPE

47

47 Implementación de un alcoholímetro mediante Raspberry Pi

 result=10 ** exponente

 print(f"result: {result:.3f}")

 return result

def interpretar_nivel(mgL):

 """

 Interpreta el nivel de alcohol según la concentración en mg/L.

 Devuelve una etiqueta y un color para mostrar en la interfaz.

 """

 if mgL < 0.1:

 return "Sin alcohol", "green"

 elif mgL < 0.25:

 return "Nivel bajo", "gold"

 elif mgL < 0.4:

 return "Nivel medio", "orange"

 else:

 return "Nivel alto", "red"

def guardar_datos(nombre, voltajeBase, voltaje, rs, r0, mgL, nivel):

 """

 Guarda los datos de la medición en un archivo CSV para el historial.

 """

 fila = [nombre, datetime.now().strftime('%d/%m/%Y %H:%M:%S'), round(voltajeBase, 3), round(voltaje,

3), round(rs,3) ,round(r0,3), round(mgL, 3), nivel]

 archivo = "historial_alcoholimetro.csv"

 try:

 with open(archivo, "a", newline='') as f:

 writer = csv.writer(f)

 writer.writerow(fila)

 except Exception as e:

 print("Error al guardar los datos:", e)

--- FLUJO WEB (RUTAS DE LA APP) ---

Ruta principal: redirige a la pantalla de calibración

@app.route('/')

def redirectInicio():

 return redirect(url_for('inicio'))

Anexo B: código appTFG.py

48

Realiza la calibración en aire limpio y muestra los valores obtenidos

@app.route('/inicio')

def inicio():

 session['nombre'] = ""

 session['voltaje_base'] = V_BASE

 session['r0'] = R0

 return render_template('inicio.html', voltaje_base=session['voltaje_base'], r0=session['r0'])

Recibe el nombre del usuario y pasa a la siguiente pantalla

@app.route('/pedir_nombre', methods=['POST'])

def pedir_nombre():

 nombre = request.form.get("nombre")

 session['nombre'] = nombre

 return render_template('prepararse.html')

Pantalla para que el usuario sople en el sensor

@app.route('/soplar')

def soplar():

 return render_template('soplar.html')

@app.route('/medir')

def medir():

 valor = leer_media(MUESTRAS_CALIBRACION, INTERVALO_CALIBRACION)

 v_rs, v_adc = calculate_v_sensor(valor)

 mgL = measure(v_adc, 0)

 nivel, color = interpretar_nivel(mgL)

 guardar_datos(

 session['nombre'],

 session['voltaje_base'],

 v_rs,

 session['rs'],

 session['r0'],

 mgL,

 nivel

)

 session['resultado'] = {

49

49 Implementación de un alcoholímetro mediante Raspberry Pi

 'nombre': session['nombre'],

 'voltaje': v_rs,

 'base': session['voltaje_base'],

 'mgL': mgL,

 'nivel': nivel,

 'color': color

 }

 return {"ok": True}

@app.route('/resultado')

def resultado():

 return render_template('resultado.html', **session['resultado'])

Muestra el historial de mediciones almacenadas en el archivo CSV

@app.route('/historial')

def historial():

 datos = []

 try:

 with open("historial_alcoholimetro.csv", newline='') as f:

 reader = csv.reader(f)

 for fila in reader:

 datos.append(fila)

 except Exception as e:

 print("Error leyendo historial:", e)

 return render_template('historial.html', registros=datos)

Punto de entrada principal de la aplicación Flask

if __name__ == '__main__':

 app.run(host='127.0.0.1', port=8080)

51

Anexo C: Carpeta templates

52

ANEXO C: CARPETA TEMPLATES

En esta carpeta se alojan los archivos html de los que se servirá la aplicación web para mostrar el contenido.

<!DOCTYPE html>

<html lang="es">

<head>

 <meta charset="UTF-8">

 <title>TFG alcoholímetro - Inicio</title>

 <style>

 body { font-family: Arial, sans-serif; text-align: center; margin-top: 50px; }

 input { padding: 10px; font-size: 16px; }

 button { padding: 10px 20px; font-size: 18px; background: green; color: white; border: none; border-radius:

5px; cursor: pointer; }

 button:disabled { background: gray; }

 </style>

 <script>

 function validarNombre() {

 const nombre = document.getElementById('nombre').value.trim();

 document.getElementById('btn').disabled = (nombre === "");

 }

 </script>

</head>

<body>

 <h1>Bienvenido al alcoholímetro</h1>

 <h2>Voltaje base registrado en el sensor en la calibración: {{ voltaje_base | round(3)}} V y R0: {{ r0 |

round(3)}} Ω</h2>

 <h3>Introduzca su nombre para comenzar con la medición</h3>

 <form action="/pedir_nombre" method="POST">

 <input type="text" id="nombre" name="nombre" placeholder="Nombre" oninput="validarNombre()">

</br>

 <button id="btn" disabled>SOPLAR</button>

 </form>

 <h3>También puede consultar el historial de mediciones</h3>

 <button style="padding: 10px 20px; font-size: 16px;">Ver historial de mediciones</button>

53

53 Implementación de un alcoholímetro mediante Raspberry Pi

</body>

</html>

Código a. inicio.html

<!DOCTYPE html>

<html lang="es">

<head>

 <meta charset="utf-8">

 <title>TFG alcoholímetro - Preparación</title>

 <style>

 body { font-family: Arial, sans-serif; text-align: center; margin-top: 50px; }

 #cuenta { font-size: 3em; color: #333; }

 </style>

 <script>

 let tiempo = 3;

 function cuentaAtras() {

 if (tiempo <= 0) {

 window.location.href = "/soplar";

 } else {

 document.getElementById("cuenta").innerHTML = tiempo + 's';

 tiempo--;

 setTimeout(cuentaAtras, 1000);

 }

 }

 window.onload = cuentaAtras;

 </script>

</head>

<body>

 <h2>Prepárate para soplar...</h2>

 <div id="cuenta">3s</div>

</body>

</html>

Código b. prepararse.html

Anexo C: Carpeta templates

54

<!DOCTYPE html>

<html lang="es">

<head>

 <meta charset="utf-8">

 <title>TFG alcoholímetro - Realizando medición</title>

 <style>

 body { font-family: Arial, sans-serif; text-align: center; margin-top: 50px; }

 .spinner {

 margin: 30px auto;

 width: 50px;

 height: 50px;

 border: 6px solid #ccc;

 border-top: 6px solid #333;

 border-radius: 50%;

 animation: spin 1s linear infinite;

 }

 @keyframes spin {

 0% { transform: rotate(0deg); }

 100% { transform: rotate(360deg); }

 }

 #cuenta { font-size: 3em; color: #333; margin-top: 20px; }

 </style>

<script>

 let tiempo = 10;

 function cuentaAtras() {

 if (tiempo >= 0) {

 document.getElementById("cuenta").innerHTML = tiempo + 's';

 tiempo--;

 setTimeout(cuentaAtras, 1000);

 } else {

 window.location.href = "/resultado";

 }

 }

 function iniciarMedicion() {

 fetch("/medir")

 .then(r => r.json())

55

55 Implementación de un alcoholímetro mediante Raspberry Pi

 .then(data => {

 console.log("Medición ejecutada:", data);

 })

 .catch(err => console.error(err));

 }

 window.onload = () => {

 iniciarMedicion(); // arranca la medición en paralelo

 cuentaAtras(); // arranca la cuenta atrás visible

 };

</script>

</head>

<body>

 <h2>Sople ahora</h2>

 <div class="spinner"></div>

 <div id="cuenta">10s</div>

</body>

</html>

Código c. soplar.html

<!DOCTYPE html>

<html lang="es">

<head>

 <meta charset="utf-8">

 <title>TFG alcoholímetro - Resultado</title>

 <style>

 body { font-family: Arial, sans-serif; text-align: center; margin-top: 40px; }

 .barra-container {

 width: 80%;

 height: 30px;

 background: lightgray;

 margin: 30px auto;

 position: relative;

 border-radius: 15px;

 }

Anexo C: Carpeta templates

56

 .limite-novel {

 position: absolute;

 left: calc(0.15 * 100%) ;

 top: 0;

 bottom: 0;

 width: 4px;

 background: lightblue;

 z-index: 2;

 }

 .limite-general {

 position: absolute;

 left: calc(0.25 * 100%);

 top: 0;

 bottom: 0;

 width: 4px;

 background: darkblue;

 z-index: 2;

 }

 .medicion {

 position: absolute;

 top: 0;

 bottom: 0;

 left: 0;

 border-radius: 15px 0 0 15px;

 z-index: 1;

 }

 .leyenda {

 font-size: 0.9em;

 margin-top: 10px;

 }

 button {

 padding: 10px 20px;

 font-size: 18px;

 background: green;

 color: white;

 border: none;

 border-radius: 5px;

57

57 Implementación de un alcoholímetro mediante Raspberry Pi

 cursor: pointer;

 }

 </style>

</head>

<body>

 <h2>Resultado para {{ nombre }}</h2>

 <p>Voltaje base: {{ base | round(3)}} V</p>

 <p>Voltaje medido: {{ voltaje | round(3)}} V</p>

 <p>Concentración estimada: {{ mgL | round(3)}} mg/L</p>

 <h3 style="color: {{ color }}">Nivel: {{ nivel }}</h3>

 <div class="barra-container">

 <div class="limite-novel" title="Límite novel (0.15 mg/L)"></div>

 <div class="limite-general" title="Límite general (0.25 mg/L)"></div>

 <div class="medicion"

 style="width: calc({{ (mgL if mgL < 0.5 else 0.5) / 0.5 * 100 }}%);

 background: {{ color }};"

 title="Medición actual">

 </div>

 </div>

 <div class="leyenda">

 <p>| Límite novel (0.15 mg/L)

 | Límite general (0.25 mg/L)</p>

 </div>

 <button style="margin-top: 30px; padding: 10px 20px; font-size: 16px;">Ver historial de

mediciones</button>

</body>

</html>

Código d. resultado.html

<!DOCTYPE html>

Anexo C: Carpeta templates

58

<html lang="es">

<head>

 <meta charset="UTF-8">

 <title>Historial de mediciones</title>

 <style>

 body { font-family: Arial, sans-serif; text-align: center; padding: 30px; }

 table { width: 90%; margin: auto; border-collapse: collapse; }

 th, td { border: 1px solid #ccc; padding: 10px; }

 th { background: #eee; }

 .Sin { background: #c8e6c9; } /* Verde */

 .Bajo { background: #fff9c4; } /* Amarillo */

 .Medio { background: #ffe0b2; } /* Naranja */

 .Alto { background: #ffcdd2; } /* Rojo */

 </style>

</head>

<body>

 <h1>Historial de Mediciones</h1>

 <table>

 <tr>

 <th>Nombre</th>

 <th>Fecha y hora</th>

 <th>Voltaje base (V)</th>

 <th>Voltaje (V)</th>

 <th>Rs (Ω)</th>

 <th>R0 (Ω)</th>

 <th>Concentración (mg/L)</th>

 <th>Nivel</th>

 </tr>

 {% for fila in registros %}

 {% set clase = '' %}

 {% if 'Sin' in fila[7] %}

 {% set clase = 'Sin' %}

 {% elif 'bajo' in fila[7] %}

 {% set clase = 'Bajo' %}

 {% elif 'medio' in fila[7] %}

 {% set clase = 'Medio' %}

 {% elif 'alto' in fila[7] %}

 {% set clase = 'Alto' %}

59

59 Implementación de un alcoholímetro mediante Raspberry Pi

 {% endif %}

 <tr class="{{ clase }}">

 <td>{{ fila[0] }}</td>

 <td>{{ fila[1] }}</td>

 <td>{{ fila[2] }}</td>

 <td>{{ fila[3] }}</td>

 <td>{{ fila[4] }}</td>

 <td>{{ fila[5] }}</td>

 <td>{{ fila[6] }}</td>

 <td>{{ fila[7] }}</td>

 </tr>

 {% endfor %}

 </table>

</body>

</html>

Código e. historial.html

Anexo C: Carpeta templates

60

61

REFERENCIAS

[1] DIRECCIÓN GENERAL DE TRÁFICO (DGT). Consumo de alcohol [en línea]. Madrid: DGT.

Disponible en: https://www.dgt.es/muevete-con-seguridad/evita-conductas-de-riesgo/consumo-de-

alcohol/

[2] WORLD HEALTH ORGANIZATION (WHO), 2018. Global status report on alcohol and health 2018
[en línea]. Ginebra: WHO. ISBN 978-92-4-156563-9. Disponible en:

https://www.who.int/publications/i/item/9789241565639

[3] TAVERNINI, D., ROSSI, R. y GASTALDI, M., 2018. Effect of alcohol use on driving performance: A

simulator study. Accident Analysis & Prevention, vol. 115, pp. 162–169. DOI: 10.1016/j.aap.2018.03.017.

[4] FILLMORE, C.J., 1981. Pragmatics and the description of discourse. Journal of Studies on Alcohol [en

línea], vol. 42, no. 1, pp. 547-565. ISSN 0096-882X. DOI: 10.15288/jsa.1981.42.547. Disponible en:

https://www.jsad.com/doi/10.15288/jsa.1981.42.547

[5] LIU, X., CHENG, S., LIU, H., HU, S., ZHANG, D. y NING, H., 2012. A survey on gas sensing

technology. Sensors [en línea], vol. 12, no. 7, pp. 9635–9665. DOI: 10.3390/s120709635.

[6] WANG, C., YIN, L., ZHANG, L., XIANG, D. y GAO, R., 2010. Metal oxide gas sensors: Sensitivity and

influencing factors. Sensors [en línea], vol. 10, no. 3, pp. 2088–2106. DOI: 10.3390/s100302088.

[7] KOROTCENKOV, G. (ed.), 2007. Handbook of Gas Sensor Materials: Vol. 1. Conventional Approaches.

New York: Springer. ISBN 978-1-4419-1220-2.

[8] SBERVEGLIERI, G. (Ed.), 1992. Gas Sensors: Principles, Operation and Developments. Springer. ISBN

978-0-7923-1433-8.

[9] MQ303B Datasheet (PDF) [en línea]. Zhengzhou Winsen Electronics Technology Co., Ltd. Disponible

en: https://www.alldatasheet.es/datasheet-pdf/pdf/1307695/WINSEN/MQ303B.html

[10] MICROCHIP TECHNOLOGY INC., 2006. *MCP3008 10-Bit ADC with SPI Interface – Datasheet* [en

línea]. Disponible en: https://ww1.microchip.com/downloads/en/devicedoc/21295d.pdf

[11] RASPBERRY PI FOUNDATION. Raspberry Pi – Official Website [en línea]. Disponible en:

https://www.raspberrypi.org/

[12] UPTON, E. y HALFACREE, G., 2021. Raspberry Pi User Guide. 4ª ed. Chichester: Wiley. ISBN 978-1-

119-23595-3.

