Trabajo Fin de Grado
Grado en Ingenieria de las Tecnologias de
Telecomunicacion

Almacenamiento y optimizacion de series temporales
de medidas ambientales mediante TimescaleDB y
caché Redis

Autor: Amando Antonano Puerta

Tutor: Antonio Jesus Sierra Collado

Dpto. Ingenieria Telematica
Escuela Técnica Superior de Ingenieria
Universidad de Sevilla

Sevilla, 2025

Trabajo Fin de Grado
en Ingenieria de las Tecnologias de Telecomunicacion

Almacenamiento y optimizacion de series
temporales de medidas ambientales mediante
TimescaleDB y caché Redis.

Autor:
Amando Antonano Puerta

Tutor:

Antonio Jesus Sierra Collado

Dpto. Ingenieria Telematica
Escuela Técnica Superior de Ingenieria

Universidad de Sevilla
Sevilla, 2025

il

Trabajo Fin de Grado: Almacenamiento y optimizacion de series temporales de medidas ambientales mediante
TimescaleDB y caché Redis.

Autor: Amando Antoniano Puerta

Tutor: Antonio Jesus Sierra Collado

El tribunal nombrado para juzgar el Proyecto arriba indicado, compuesto por los siguientes miembros:

Presidente:

Vocales:

Secretario:

Acuerdan otorgarle la calificacion de:

Sevilla, 2025

El secretario del Tribunal

vii

A mi familia y a mis amigos por
su apoyo y paciencia sin limites.

Agradecimientos

Quiero expresar mi mas sincero agradecimiento a todas las personas que me han acompafiado y apoyado a lo
largo de esta etapa universitaria.

En primer lugar, gracias a mi familia por su apoyo incondicional, por confiar en mi y apoyarme incluso en los
momentos donde ya no tenia animos. Sin vuestro animo, este camino hubiera sido mas empinado y con mas
obstaculos.

A mi tutor, Antonio Jests Sierra Collado, por su orientacion, paciencia y compromiso durante todo el proceso.
Su experiencia y su guia han sido fundamentales para poder realizar este trabajo.

También quiero agradecer a mis amigos fuera y dentro de la carrera, no solo por darme animo cuando veia todo
negro o compartir apuntes, sino también por todos los buenos momentos.

Finalmente, a todas aquellas personas que, de una manera u otra, han contribuido a mi formacion y crecimiento
durante estos afios. Gracias por formar parte de este proceso.

Amando Antoriano Puerta

Sevilla, 2025

X

Resumen

En la actualidad, el tratamiento eficiente de grandes volumenes de datos en tiempo real se ha convertido en un
desafio clave dentro del &mbito tecnoldgico, especialmente en el contexto del Internet de las Cosas (IoT). La
monitorizacion ambiental, y en particular el control de variables como la temperatura y la humedad es una de
las areas que mas se ha beneficiado de este avance, permitiendo el desarrollo de soluciones inteligentes para
distintos entornos.

En este contexto, el presente Trabajo de Fin de Grado se centra en el disefio e implementacion de un sistema de
obtencion y almacenamiento de medidas de temperatura y humedad, haciendo uso de tecnologias especializadas
en el tratamiento de series temporales y almacenamiento en caché. Para la toma de datos se emplea una placa
Arduino conectada a un sensor DHT11, encargado de capturar periodicamente las lecturas del entorno. Estos
datos se envian a una base de datos TimescaleDB, una extension de PostgreSQL optimizada para el
almacenamiento y consulta eficiente de series temporales.

Con el fin de mejorar el rendimiento del sistema en las consultas mas recurrentes, se ha incorporado Redis como
sistema de caché, permitiendo reducir el tiempo de respuesta y la carga sobre la base de datos. Gracias a esta
arquitectura, el sistema logra ofrecer una solucion eficaz para la recopilacion, almacenamiento, y visualizacion
de datos ambientales en tiempo real.

En este trabajo se ha desarrollado un sistema funcional capaz de recopilar, almacenar y consultar datos
ambientales en tiempo real mediante el uso combinado de Arduino, TimescaleDB y Redis. Los resultados
obtenidos muestran una mejora notable en la eficiencia y en los tiempos de respuesta, lo que valida la idoneidad
de la arquitectura propuesta para escenarios loT.

X1

Abstract

Nowadays, the efficient processing of large volumes of real-time data has become a key challenge in the field
of technology, particularly within the context of the Internet of Things (IoT). Environmental monitoring, and
specifically the control of variables such as temperature and humidity, is one of the areas that has greatly
benefited from these advancements, enabling the development of intelligent solutions for various environments.

In this context, the present Final Degree Project focuses on the design and implementation of a system for
acquiring and managing temperature and humidity measurements, using technologies specialized in time-series
data handling and caching. An Arduino board connected to a DHT sensor is used to periodically capture
environmental readings. These measurements are then sent to a TimescaleDB database, a PostgreSQL extension
optimized for the efficient storage and querying of time-series data.

To enhance system performance in frequent queries, Redis has been incorporated as a caching layer, reducing
response times and easing the load on the main database. With this architecture, the system provides an effective
solution for collecting, storing, and visualizing environmental data in real time.

The main objective of this project is to demonstrate how the integration of technologies such as Arduino,
TimescaleDB, and Redis can lead to scalable and efficient systems for data management in loT scenarios, laying
the groundwork for future applications in fields such as smart homes, industrial monitoring, or precision
agriculture.

xiii

Indice

Agradecimientos ix
Resumen xi
Abstract xiii
indice Xiv
indice de Tablas XVi
indice de Figuras Xviii
Notacion XXi
1 Introduccién 1
1.1 Motivacion 1
1.2 Objetivos 1
1.3 Antecedentes 2
1.4 Descripcion de la solucion 2
141 Obijetivos Especificos 2
1.4.2 Funcionalidades Principales 3
143 Esquema de la Arquitectura 3

1.5 Estructura de la memoria 4

2 Recursos Utilizados 8
2.1 Recursos Hardware 8
2.1.1 Portatil 8
2.1.2 Placa Arduino 9
2.13 Sensor DHT11 9

2.2 Recursos Software 10
2.2.1 Arduino IDE 10
2.2.2 JavaScript 10
223 Node.js 11
2.2.4 Redis 11
2.2.5 Ubuntu 11
2.2.6 Windows 10 PRO 12
2.2.7 TimescaleDB 12
2.2.8 Docker 12
2.2.9 Mozilla Firefox 13
2.2.10 Visual Studio Code 13

3 Estadodel Arte 11
3.1 Contextualizacion: IoT y Monitorizacion ambiental 11
31.1 Definicidn y evolucion del Internet de las Cosas (loT) 11
31.2 Importancia de la monitorizacidn ambiental en loT 11
313 Arquitecturas de sistemas loT para monitorizacién ambiental 12

3.2 Datos Temporales 12
3.2.1 Definicion de series temporales 12
3.2.2 Componentes fundamentales de los datos de series temporales 12

3.23 Retos en la gestidn de series temporales
3.3 Plataformas para Series Temporales: Enfoque en TimescaleDB

331 Bases de datos especializadas en series temporales

3.3.2 Bases de datos relacionales con extensiones para series temporales
3.4 Sistemas de Caché en entornos loT: Enfoque en Redis.

341 Rol de la Memoria Caché

34.2 Comparativa general de soluciones de Sistemas Caché

3.43 Arquitectura de Redis y caracteristicas relevantes

344 Uso de Redis como capa caché en monitorizacion ambiental.
3.5 Contenerizacion y Despliegue: Enfoque en Docker

3.5.1 Concepto de contenedor y diferencias con maquinas virtuales

3.5.2 Docker en arquitecturas loT

3.5.3 Docker Compose para orquestacion local

3.54 Beneficios y limitaciones de Docker en loT

4 Desarrollo del proyecto
4.1 Arquitectura General del Sistema
4.2 Adquisicion y tratamiento de datos
4.3 Base de datos de series temporales
4.4 Implementacion de la capa caché con Redis
4.5 Visualizacion de datos mediante API REST
4.6 Contenerizacion y despliegue

5 Pruebasy Validaciones
5.1 Entorno de pruebas
5.2 Pruebas de adquisicion de datos
5.3 Pruebas de almacenamiento y vistas materializadas
5.4 Pruebas de la APl REST
5.5 Pruebas de la capa de caché

6 Conclusiones y lineas futuras
6.1 Cumplimiento de objetivos
6.2 Valoracion del trabajo realizado
6.3 Lineas de mejora y trabajos futuros

ANEXO A: Cédigo fuente del sistema
ANEXO B: Instrucciones y comandos

Referencias

XV

12
13
13
14
17
17
18
19
21
21
21
22
22
24

26
26
27
28
28
28
29

32
32
32
33
35
39

43
43
43
43

45
63
65

Tabla 1. Aspectos busConnector.js
Tabla 2. Vistas Materializadas

Tabla 3. Servicios en Docker-Compose
Tabla 4. Entorno de pruebas

Tabla 5. Tabla comparativa rendimiento con caché

INDICE DE TABLAS

27
28
30
32
41

Xvil

Figura 1-1. Arquitectura

Figura 2-1. Portatil Acer TravelMate TMP215-53.

Figura 2-2. Placa Arduino AZ-Delivery UNO.
Figura 2-3. Sensor DHT11

Figura 2-4. Arduino

Figura 2-5. JavaScript

Figura 2-6. Node.js

Figura 2-7. Redis

Figura 2-8. Ubuntu

Figura 2-9. Windows 10 PRO

Figura 2-10. TimescaleDB

Figura 2-11. Docker

Figura 2-12. Mozilla Firefox

Figura 2-13. Visual Studio Code

Figura 3-1. Definicién de una Hypertable.
Figura 3-2.Crear indice.

Figura 3-3.Compresion datos.

Figura 3-4.Creacion de Vista Materializada.
Figura 3-5.Creacion de politica de eliminacion.
Figura 3-6. Ejemplo Filtrado por time.
Figura 3-7. Ejemplo de Agregacion continua.
Figura 3-8. Redis Master-Slave.

Figura 3-9. Redis Sentinel.

Figura 3-10. Redis Cluster.

Figura 3-11. Docker Compose-Version.
Figura 3-12.Docker Compose-Services.
Figura 3-13.Docker Compose-Volumes.
Figura 3-14.Docker Compose-Networks.
Figura 3-15. Docker Compose-Environment.
Figura 3-16. Docker Compose-Depends on
Figura 4-1. Arquitectura General del sistema
Figura 4-2. Adquisicion y Tratamiento de datos
Figura 4-3. Interfaz Swagger Ul 1

Figura 4-4. Interfaz Swagger UI 2

INDICE DE FIGURAS

Figura 4-5. Interfaz Swagger UI 3

Figura 5-1. Contenedores Entorno Pruebas

Figura 5-2. Comprobacion de datos

Figura 5-3. Valores de la tabla medidas_sensor
Figura 5-4. Estructura tabla medidas_sensor
Figura 5-5. Hypertable medidas_sensor

Figura 5-6. Vistas materializadas

Figura 5-7. Consulta datos a vista materializada
Figura 5-8. Actualizacion de Vistas Materializadas.
Figura 5-9. Comprobacion de /concache-25

Figura 5-10. Comprobacion de /temp-25-cache
Figura 5-11. Comprobacion de /humed-25-cache
Figura 5-12. Comprobacion de /valores-minuto-cache
Figura 5-13. Comprobacion de /sincache-25
Figura 5-14. Comprobacion de /temp-25

Figura 5-15. Comprobacion de /humed-25

Figura 5-16. Comprobacion de /valores-minuto-sincache
Figura 5-17. Almacenamiento Key en Caché
Figura 5-18. Prueba caché vacia

Figura 5-19. Comprobacion TTL caché

Figura 5-20. Comprobacion expiracion caché
Figura 5-21. Estadisticas endpoint sin caché

Figura 5-22. Estadisticas endpoint con caché

XIX

29
32
33
33
34
34
34
34
35
35
36
36
37
37
38
38
39
39
39
40
40
40
41

SSD
CPU
TB
IDE
10T
RFID
SQL

TTL
REDIS

Memoria de Acceso Aleatorio
Unidad de Estado Sélido

Unidad Central de Procesamiento
Terabyte

Entorno de Desarrollo Integrado
Internet de las Cosas
Identificacion por Radiofrecuencia
Lenguaje de Consulta Estructurado
Codificacion por Longitud de Ejecucion
Tiempo de Vida

Servidor de Diccionario Remoto

Xx1

Notacion

1 INTRODUCCION

1.1 Motivacion

En los ultimos afios, el crecimiento del internet de las cosas (IoT) ha impulsado el desarrollo de sistemas capaces
de recopilar, procesar y analizar grandes voliimenes de datos en tiempo real. Esta tendencia ha despertado un
creciente interés personal y académico por explorar soluciones que permitan una gestion eficiente de datos
provenientes del entorno, especialmente aquellos relacionados con condiciones ambientales como la
temperatura y humedad. Por esta razon, surgié la motivacion por disefiar un sistema que integrara hardware de
bajo coste con tecnologias de almacenamiento y consultas avanzadas, capaces de responder de forma 4gil a las
demandas de datos temporales.

El uso de una placa Arduino junto a un sensor de temperatura y humedad permite simular un escenario realista
y accesible de adquisicion de datos, ideal para proyectos de monitorizacion ambiental en hogares, invernaderos,
laboratorios o entornos industriales. Por otro lado, el almacenamiento eficiente de series temporales representa
un reto técnico que va mas alla del simple registro de datos. La eleccion de TimescaleDB como base de datos
no fue casual ya que su arquitectura estd especialmente disefiada para trabajar con grandes volimenes de datos
distribuidos en el tiempo, ofreciendo consultas potentes y herramientas de agregacion avanzadas.

Finalmente, la incorporacion de Redis como sistema caché responde a la necesidad de optimizar el rendimiento
del sistema en escenarios donde la latencia y la rapidez de acceso a la informacion son factores criticos. Poder
combinar estas tecnologias en un mismo proyecto no solo ha supuesto un desafio técnico interesante, sino
también una oportunidad para aprender a construir sistemas modernos y escalables que pueden ser aplicados a
casos reales dentro del &mbito del IoT.

1.2 Objetivos

En esta seccion, se enumeran los objetivos que se han marcado para el desarrollo del proyecto:

e Disefiar e implementar un sistema de adquisicion de datos ambientales mediante una placa Arduino y
un sensor DHT11 para medir temperatura y humedad de forma continua.

e Realizar un estudio sobre las tecnologias de PostgreSQL con la extension de TimescaleDB, Docker y
Redis para comprender sus caracteristicas y cuales podrian ser sus requisitos de integracion.

e Utilizar Docker para contener la base de datos, el script JavaScript de insercion de datos y Redis para
facilitar su despliegue, gestion, comunicacion e integracion.

2 Introduccion

1.3 Antecedentes

Este trabajo es una extension del trabajo realizado por Enrique Sanchez Cardoso “Base de datos para Series
Temporales y caché” [1], bajo la tutela de Antonio Jests Sierra Collado. Ambos proyectos se centran en
demostrar la eficacia de las tecnologias de gestién de datos para entornos de alto rendimiento, haciendo uso de
TimescaleDB y Redis para optimizar el almacenamiento y la consulta de grandes volimenes de informacion.

El proyecto parte de esa base teorica y técnica, y afiade una capa practica de adquisicion de datos reales mediante
hardware fisico, concretamente una placa Arduino conectada a un sensor DHT11. Esta diferencia fundamental
introduce una dimension loT al sistema, conectando el mundo fisico con el entorno digital a través de sensores,
haciendo que la generacion de datos no sea artificial, sino proveniente de condiciones ambientales reales y en
tiempo real. Esta innovacion permite no solo la monitorizacioén en entornos controlados, sino también el analisis
de datos ambientales reales, ampliando asi el abanico de aplicaciones potenciales del sistema.

Considerando los avances alcanzados en el campo de la monitorizacion y gestion de datos, este proyecto se
propone complementar y ampliar las investigaciones previas mediante el uso de tecnologias actuales,
optimizando la eficiencia en la captura, almacenamiento y consulta de datos en tiempo real.

1.4 Descripcion de la solucion

En este apartado se presenta una descripcion detallada de la solucion desarrollada en este proyecto. La solucion
tiene como objetivo principal proporcionar una arquitectura funcional para la adquisicion, almacenamiento,
procesamiento y consulta eficiente de datos ambientales (temperatura y humedad) en tiempo real, haciendo uso
de tecnologias como Arduino, TimescaleDB y Redis. Esta solucion integra componentes de hardware y software
mediante una arquitectura modular, escalable y orientada a escenarios del Internet de las Cosas.

A lo largo de este apartado, se describen los componentes principales de la solucion, asi como su interconexion,
flujos de datos y funcionalidades clave.

1.41 Objetivos Especificos

Los objetivos especificos de este Proyecto son los siguientes:
e Captura de datos fisicos en tiempo real:

Se utiliza una placa Arduino conectada a un sensor DHT11 para la adquisicion periddica de datos de
temperatura y humedad del entorno. Estas mediciones se obtienen a intervalos definidos mediante un
sketch' en Arduino.

e Procesamiento y envio de datos al backend:

Un script en JavaScript, ejecutado en un equipo local, se encarga de leer los datos transmitidos por el
Arduino (via puerto serie) y formatearlos adecuadamente para su insercion en la base de datos.

¢ Persistencia temporal optimizada con TimescaleDB:

Almacenar los datos en una base de datos TimescaleDB, una extension de PostgresSQL
especificamente disefiada para el manejo de series temporales, que permite consultas complejas y
eficientes sobre datos distribuidos en el tiempo incluyendo operaciones de agregacion, filtrado por
intervalo y ordenamiento cronologico.

e Mejora del rendimiento mediante caché:

Implementar Redis como sistema de caché para reducir la carga sobre la base de datos y acelerar las
respuestas a las consultas mas frecuentes lo que reduce la latencia de respuesta.

1 Forma de referirse a los programas que se cargan y ejecutan en la placa Arduino.

Almacenamiento y optimizacion de series temporales de medidas ambientales mediante TimescaleDB

1.4.2

17T 1

Contenerizacion del sistema:

Todos los componentes del sistema se ejecutan en contenedores Docker independientes, conectados a
través de una red virtual Docker comun.

Funcionalidades Principales

Las principales funcionalidades de este proyecto son las siguientes:

1.4.3

Adquisicion de datos en tiempo real:

El sensor DHT11 envia datos cada cierto intervalo de tiempo mediante la placa Arduino, los cuales son
procesados por un script que los inserta en la base de datos.

Almacenamiento de series temporales:

Cada dato de temperatura y humedad se registra en TimescaleDB con su correspondiente timestamp?,
permitiendo el seguimiento historico y andlisis temporal.

Consultas optimizadas mediante Redis:

Al realizarse una consulta, el sistema primero verifica si la respuesta ya esta cacheada en Redis. Si es
asi, devuelve el resultado inmediatamente. Si no, realiza la consulta a la base de datos TimescaleDB,
almacena el resultado en Redis y luego lo devuelve.

Contenedores para cada componente:
Toda la infraestructura esta desplegada en contenedores Docker, lo que facilita la escalabilidad, el

despliegue y la replicacion en entornos diferentes.

Esquema de la Arquitectura

En la figura 1-1, se presenta un esquema con la estructura general del proyecto con el fin de facilitar la
comprension de este al lector. Podemos distinguir 5 elementos principales:

Placa Arduino + Sensor DHT11:

Captura los datos ambientales del entorno fisico. El sensor toma medidas peridodicamente, y las
transmite via puerto serie.

Script de procesamiento (JavaScript):
Lee los datos del sensor, los procesa y los envia para su insercion en la base de datos TimescaleDB.
Base de datos TimescaleDB:

Base de datos especializada en series temporales. Almacena los registros juntos con sus marcas de
tiempo.

Sistema Caché Redis:
Sistema de almacenamiento en memoria para la caché de resultados de consultas recurrentes.
Contenedores Docker:

Cada uno de los servicios anteriores (TimescaleDB, Redis, script) se ejecuta en su contenedor respectivo

2 Marca de tiempo que identifica cudndo ocurrié un evento, generalmente con precision de milisegundos.

3

Introduccion

gestionado por Docker y que los conecta entre si mediante una red virtual docker comun.

Red Virtual Docker

Contenedor Docker 3

Consulta

A

‘ l

Cache for Redis
Contenedor Docker 2
Contenedor Docker 1 @
Base de
e datos

Puerto Serial

Sensor de

temperatura .
h dad Almacenamiento
y humeda TimescaleDB
de loT thing
Script
Dispositive portatil Python

Figura 1-1. Arquitectura

1.5 Estructura de la memoria

En esta seccion, se da un breve resumen de lo que trata cada apartado clave de la memoria:

A.

Introduccion:

Este capitulo inicial establece el contexto general del proyecto, exponiendo la motivaciéon que ha
impulsado su desarrollo, asi como los objetivos planteados, los antecedentes relevantes y las
funcionalidades. Se justifica la eleccion de las tecnologias empleadas y se presenta una vision preliminar
de la arquitectura implementada para facilitar su comprension al lector.

Recursos Utilizados:

En este apartado se detallan los recursos tanto hardware como softwares empleados para el desarrollo
del sistema

Estado del arte:

Este capitulo recoge un analisis de las tecnologias fundamentales utilizadas en el proyecto, con especial
atencion a TimescaleDB y Redis. Se revisan sus caracteristicas, arquitectura interna ventajas y casos de
uso tipicos, asi como su adecuacion para sistemas de series temporales y almacenamiento en caché.

Desarrollo del proyecto:

El nucleo técnico del trabajo se presenta en este apartado. Se describe de forma detallada el proceso de
disefio, implementacion y puesta en marcha del sistema completo. Se aborda la obtencion de datos
mediante Arduino, la transmision y tratamiento de estos, su almacenamiento en TimescaleDB vy la
integracion de Redis como capa de caché. También se incluye la estructura de los contenedores Docker
y la interconexion entre los diferentes modulos.

Conclusiones y lineas futuras:

Este apartado recoge una reflexion sobre los resultados obtenidos y el cumplimiento de los objetivos
propuestos. Se presentan tanto conclusiones técnicas como personales, valorando la experiencia
adquirida a lo largo del proyecto. Ademas, se identifican posibles lineas de mejora y extension del
sistema, proponiendo futuras actuaciones.

Almacenamiento y optimizacion de series temporales de medidas ambientales mediante TimescaleDB

17T 1

En este capitulo se han expuesto los objetivos, la motivacion y el contexto en el que se desarrolla el proyecto.
Estos elementos permiten comprender la importancia de gestionar datos en tiempo real y la necesidad de disefiar
un solucion eficiente. En los capitulos siguientes se profundizard en las tecnologias disponibles y en como se
aplican al caso de estudio.

Almacenamiento y optimizacion de series temporales de medidas ambientales mediante TimescaleDB y caché Redis.

8 Recursos Utilizados

2 RECURSOS UTILIZADOS

Durante este proyecto, se han utilizado multiples recursos hardware y software para lograr su correcta
implementacion.
2.1 Recursos Hardware

2.1.1 Portatil

Para la implementacion del proyecto, las pruebas y la redaccion de este documento, se ha usado el portatil Acer
TravelMate TMP215-53 que se puede ver en la figura 2-1.

Figura 2-1. Portatil Acer TravelMate TMP215-53.

Sus principales caracteristicas son las siguientes [2]:
e Procesador Intel Core 15 de undécima generacion.
o Pantalla de 15.6 pulgadas con resolucion Full HD (1920x1080 pixeles).
e Memoria RAM de 8 GB.

e Memoria SSD de almacenamiento de 1TB.

Almacenamiento y optimizacion de series temporales de medidas ambientales mediante TimescaleDB

17T 1

2.1.2 Placa Arduino

Para programar y poner en funcionamiento el sensor de temperatura y humedad se utiliza una placa Arduino
AZ-Delivery UNO que podemos observar en la figura 2-2.

Figura 2-2. Placa Arduino AZ-Delivery UNO.

Sus principales caracteristicas son [3]:
e Microcontrolador AZ-ATMega328.
e 14 pines de E/S digitales.
e 6 pines analogicos.

e 6 pines E/S digitales PWM.

2.1.3 Sensor DHT11

El dispositivo que toma las medidas de temperatura y humedad es el sensor DHT11 que se puede observar en la
figura 2-3.

DATA

Figura 2-3. Sensor DHT11

Sus principales caracteristicas son [4]:
e Tension de alimentacion de 5 voltios.

e Consumo tipico en ejecucion de 0.2 miliamperios.

10 Recursos Utilizados

e Rango de temperaturas de 0 a +50 grados Celsius.
e Rango de humedad de 20 a 90% de Humedad Relativa.

2.2 Recursos Software

2.21 Arduino IDE

El software Arduino, también llamado Arduino IDE, es una aplicacion que permite escribir, compilar y cargar
codigo en placas Arduino. Su editor de codigo esta basado en C/C++ con funciones especificas para controlar
entradas/salidas. Permite la lectura de sensores, controlar actuadores, enviar/Recibir datos via puerto serie,
comunicarte con otros dispositivos y automatizar procesos fisicos simples. [5]

ARDUINO

Figura 2-4. Arduino

2.2.2 JavaScript

JavaScript ha sido el lenguaje escogido para desarrollar el script de adquisicion de datos. Es un lenguaje de
programacion de scripts, utilizado principalmente para afiadir interactividad y contenido dindmico a las paginas
web. lenguaje de programacion interpretado, dindmico, basado en prototipos y asincrono [6].

Figura 2-5. JavaScript

Almacenamiento y optimizacion de series temporales de medidas ambientales mediante TimescaleDB1

17T 1

2.2.3 Node.js

Node.js ha sido elegido para ser el entorno de ejecucion de la API. Es un entorno de ejecucion JavaScript que se

caracteriza por ser asincrono y basado en eventos. [7]
d c.
S)

Figura 2-6. Node.js

2.24 Redis

Es una base de datos en memoria RAM que funciona como un almacén de estructuras de datos clave-valor, lo
que permite acceder a los datos con una rapidez excepcional. Esta caracteristica lo convierte en una herramienta
ideal para implementar sistemas de caché donde la velocidad de lectura y escritura es critica. [§]

redis

Figura 2-7. Redis

2.2.5 Ubuntu

El sistema operativo elegido para el desarrollo del script, la base de datos TimescaleDB, la ejecucion en local de
la base de datos y del script, el desarrollo de los contenedores Docker y su posterior despliegue, ha sido Ubuntu.

Ubuntu

Figura 2-8. Ubuntu

12 Recursos Utilizados

2.2.6 Windows 10 PRO

El sistema operativo elegido para desarrollar el sketch de Arduino y su puesta en marcha es Windows 10 PRO.

ER Windows

Windows 10

Pro

Figura 2-9. Windows 10 PRO

2.2.7 TimescaleDB

TimescaleDB es una extension de la base de datos relacional PostgreSQL optimizada para el almacenamiento y
consulta eficiente de series temporales. En el proyecto, actia como el repositorio principal de los datos
ambientales obtenidos.

@; TIMESCALE

Figura 2-10. TimescaleDB

2.2.8 Docker

Docker es una herramienta de contenerizacion para desplegar de forma modular y aislada distintos componentes
de un sistema. Permite una configuracion homogénea y una gestion sencilla de dependencias, redes virtuales y
volimenes de persistencia. [9]

docker

Figura 2-11. Docker

Almacenamiento y optimizacion de series temporales de medidas ambientales mediante TimescaleDB3

17T 1

2.29 Mozilla Firefox

Es el navegador elegido para poder visualizar los resultados de las consultas a la base de datos.

& Firefox

Figura 2-12. Mozilla Firefox

2.2.10 Visual Studio Code

Es un editor de codigo gratuito y ligero de Microsoft. Se caracteriza por el soporte de multiples lenguajes y
entornos, autocompletado de codigo inteligente, depuracion y una amplia variedad de extensiones para nuevas
funcionalidades. [10]

Figura 2-13. Visual Studio Code

En este capitulo se han descrito los recursos de hardware y software necesarios para el desarrollo del proyecto.
La seleccion realizada responde a criterios de disponibilidad, eficiencia y compatibilidad. Estos recursos
constituyen la base practica sobre la que se construira la solucion.

14

Recursos Utilizados

3 ESTADO DEL ARTE

En este capitulo se revisan y analizan principales tecnologias, herramientas y enfoques relacionados con el
disefio e implementacion de sistemas de monitorizacion ambiental en entornos loT, con especial énfasis en el
uso de bases de datos de series temporales, sistemas de caché y contenedores para despliegue.

3.1 Contextualizacion: loT y Monitorizacién ambiental
En este apartado hablaremos sobre [oT y su uso en la monitorizacion ambiental.

3.1.1 Definicion y evolucion del Internet de las Cosas (loT)

El término Internet de las Cosas hace referencia al proceso de conectar los elementos fisicos cotidianos al internet
como sensores, actuadores, electrodomésticos etc. [11] Con el objetivo de recopilar, intercambiar y procesar
datos de manera autonoma a través de redes de comunicacion. El concepto ha ido evolucionando desde el
reconocimiento de la importancia de la identificacion y localizacion de dispositivos mediante RFID en la década
de 2000, fue entonces cuando la madurez de las tecnologias inalambricas y la electrificacion masiva permitio la
proliferacion de soluciones IoT escalables [12].

En la actualidad, el IoT abarca desde aplicaciones de domotica basica (luces, climatizacion, alarmas) hasta
sistemas industriales de gran envergadura (Industria 4.0), pasando por sectores como agricultura de precision,
salud y ciudades inteligentes [12]. En todos estos ambitos, la caracteristica comtin radica en la necesidad de
monitorizar pardmetros fisicos como temperatura y humedad, y prestar servicios asociados como notificaciones,
andlisis predictivo o control remoto.

3.1.2 Importancia de la monitorizacion ambiental en loT

La monitorizacion ambiental consiste en medir y recopilar de manera continua y sistematica distintas variables
mediante sensores y dispositivos conectados [13]. Hay varias razones por las que es importante [13]:

e Control de entornos peligrosos: Lugares como laboratorios, almacenes de productos o invernaderos
requieren de un control total de los factores ambientales para garantizar la seguridad e integridad de lo
que se encuentra en su interior.

e Aplicaciones en salud y seguridad: Monitorear la calidad del aire en hospitales y espacios publicos
ayuda a detectar a tiempo condiciones peligrosas.

e Agricultura de precision: El control de la temperatura y humedad del suelo en cultivos puede mejorar
la produccion y reducir el consumo de agua.

e [Eficiencia energética: La gestion de climatizacion y sistemas de ventilacion se basa en datos
ambientales que permiten optimizar su consumo energético.

11

12 Estado del Arte

3.1.3 Arquitecturas de sistemas loT para monitorizacion ambiental

A continuacion, se lista las capas que suelen formar parte de la mayoria de las arquitecturas loT [14]:

e Capade percepcion: Es la base de la arquitectura [oT. Incluye los sensores y actuadores instalados en
el entorno fisico. En nuestro caso, es el sensor DHT11 junto con la placa Arduino.

e Capa de red: Es la responsable de transportar los datos recopilados por los dispositivos hacia sistemas
centrales para su andlisis y procesamiento. En este proyecto seria el enlace serial entre la placa Arduino
y el equipo local.

e Capa de procesamiento: Engloba los servicios de almacenamiento, procesamiento, analisis y
visualizacion. En nuestro caso, seria la base de datos TimescaleDB.

e Capa de aplicacion: Representa las aplicaciones, interfaces o paneles de control para el usuario final.
En este trabajo seria el navegador donde se muestran los resultados de las consultas a la base de datos.

o Capa de seguridad: Implementa autenticacion, encriptacion y control de accesos para proteger la
integridad de datos. En nuestro caso, no implementamos esta capa.

3.2 Datos Temporales

A la hora de disefiar un sistema de monitorizacion ambiental, es preciso comprender las particularidades de los
datos generados. Gestionar eficientemente las series temporales de datos de sensores (periddicos o por eventos)
es un desafio caracteristico de las aplicaciones IoT.

3.21 Definicion de series temporales

Una serie temporal es una variable estadistica cuyas observaciones estan ordenadas cronoldgicamente [15]. En
el contexto de la monitorizacion ambiental, cada observacion comprende un valor de temperatura o humedad
junto con una marca de tiempo que indica cuando se hizo la lectura.

3.2.2 Componentes fundamentales de los datos de series temporales

A continuacion, se enumeran los componentes fundamentales [16]:

e Tendencia: Direccion general de los datos a lo largo del tiempo, como aumento, disminucion o
constante.

o Estacionalidad: Patrones de datos que se repiten a lo largo de un conjunto de periodos de tiempo, como
diario, mensual o anual.

e Variaciones Ciclicas: Patrones de datos que se repiten, pero no son estacionales y se producen a lo
largo de varios afos.

e Variaciones irregulares: Altibajos impredecibles que no se pueden explicar con otros componentes.

3.2.3 Retos en la gestion de series temporales

Durante este apartado se hablara de los siguientes retos en la gestion de retos temporales:
e Escalabilidad horizontal o vertical:

La base de datos debe escalar sin perder rendimiento a medida que aumenta el nimero de sensores o la
frecuencia de muestreo. En fases iniciales puede que la escalabilidad vertical sea suficiente, pero a largo
plazo probablemente se necesite escalabilidad horizontal para distribuir carga

e Control de la latencia de escritura:

Un aumento de la latencia de escrituras puede provocar la pérdida de datos o inconsistencias temporales
por ello se debe garantizar que las inserciones de nuevos datos no se retrasen demasiado.

12

Almacenamiento y optimizacion de series temporales de medidas ambientales mediante TimescaleDB3

17 1

e Gestion de grandes voliimenes historicos:

El almacenamiento indefinido de lecturas conduce en pocos afos a volimenes de informacion de
terabytes o mas. Es necesario implementar estrategias de compresion, particionado temporal y politicas
de retencion.

e Optimizacién de consultas de agregados:

Calculos de estadisticas en rangos temporales muy amplios pueden provocar sobrecarga en tiempo de
computo.

¢ Consistencia temporal:
Asegurar que las marcas de tiempo sean comparables y constantes entre nodos es un reto.
e Integracion con sistemas de caché:

Para reducir la latencia de acceso a los datos se recurre a sistemas de caché en memoria, lo cual afiade
complejidad arquitectdnica.

3.3 Plataformas para Series Temporales: Enfoque en TimescaleDB

Existen muchas alternativas en el mercado para afrontar el desafio de gestionar series temporales. A
continuacion, se realiza una revision comparativa de las mas relevantes, con especial profundizacion en
TimescaleDB, la tecnologia seleccionada en este proyecto.

3.3.1 Bases de datos especializadas en series temporales

En este apartado se realizard una comparativa entre los distintos sistemas especializados de bases de datos de
series temporales:

e InfluxDB:

o Descripcidon: Base de datos de codigo abierto disenada exclusivamente para datos de series
temporales. Emplea un motor de almacenamiento propio optimizado para escrituras frecuentes
y compresion de datos [17].

o Ventajas: Alta velocidad de escritura, compresion de datos eficiente y lenguaje de consulta
especifico enfocado en operaciones temporales [17].

o Desventajas: Menos ecosistema SQL genérico y algunos componentes requieren licencias en
el caso de la version de empresa.

e OpenTSDB:

o Descripcion: Es una base de datos de series temporales distribuida y escalable montada sobre
Hbase® [18].

o Ventajas: Escalabilidad horizontal ilimitada [19].

o Desventajas: Complejidad de despliegue y mantenimiento, latencias de consulta mas elevadas
para agregaciones complejas y una curva de aprendizaje elevada [19].

e Graphite:

o Descripcion: Herramienta orientada a métricas de infraestructuras como servidores o redes
[20].

o Ventajas: Facil instalacion y buena integracion con herramientas de visualizacion [20].

o Desventajas: Baja escalabilidad al almacenar los datos en archivos locales y carece de lenguaje
de consulta SQL [20].

3 Sistema de gestion de base de datos NoSQL distribuida de co6digo abierto.

14 Estado del Arte

o QuestDB:

o Descripcion: Base de datos de series temporales de codigo abierto que ofrece una ingesta
ultrarrapida de datos y consultas SQL dinamicas de baja latencia [21].

o Ventajas: Ingesta de alta velocidad de datos, rendimiento solido en hardware limitado y
formato de almacenamiento en columnas [21].

o Desventajas: Ecosistema y comunidad mas reducidos que PostgreSQL.
e Prometheus:

o Descripcién: Es un motor de cddigo abierto para monitorizacion de sistemas que recolecta
métricas a través de un modelo basado en HTTP [22].

o Ventajas: Lenguaje de consulta flexible, no depende del almacenamiento distribuido y
compatibilidad con multiples modos de grafico y paneles [22].

o Desventajas: Su modelo de retencion de datos y escalabilidad nativa esta pensado para la
monitorizacion de infraestructuras, no para datos IoT heterogéneos a gran escala.

3.3.2 Bases de datos relacionales con extensiones para series temporales

En este apartado se hablara sobre PostgreSQL y las distintas extensiones disponibles para el manejo de series
temporales y se analizara en profundidad TimescaleDB, que es la que se ha elegido para implementar en este
proyecto.

3.3.21 PostgreSQL con extension para series temporales

PostgreSQL es una base de datos relacional que ofrece fiabilidad, robustez, integridad transaccional y un amplio
abanico de extensiones [23]. Algunas de las extensiones ofrecen capacidades especificas de series temporales:

o TimescaleDB: Es la extension mas relevante ya que implementa hypertables* y chunks® que facilitan
la insercion masiva, la compresion de datos y la creacion de agregaciones continuas (Vvistas
materializadas que se actualizan automaticamente de manera incremental).

o PipelineDB: Orientada a procesamiento continuo de flujo de datos (ya no esta mantenida oficialmente).

o Cstore_fdw: Es una extension que proporciona almacenamiento columnar en PostgreSQL, util para
lectura analitica en lotes, pero no esta optimizada para inserciones frecuentes.

Por un lado, las ventajas de usar PostgreSQL con extensiones son: La integridad transaccional y soporte
completo SQL estandar, un ecosistema maduro con multitud de herramientas, facilidad de migracion y
portabilidad de datos [24]. Por otra parte, las desventajas son un overhead® de las transacciones ACID para
inserciones de alta frecuencia si no se configura correctamente [25] y tener que ejecutar la base de datos en
versiones recientes para obtener las mejoras de optimizacion [26].

4 Tablas de PostgreSQL que se particionan automaticamente por tiempo, lo que las convierte en una forma eficiente de almacenar y consultar
datos de series temporales.

5 Unidades fundamentales de almacenamiento dentro de las hipertablas.

¢ Se refiere al costo, en términos de rendimiento y recursos, que implica garantizar que las transacciones cumplan con las propiedades ACID
(Atomicidad, Consistencia, Aislamiento y Durabilidad)

14

Almacenamiento y optimizacion de series temporales de medidas ambientales mediante TimescaleDB35

3.3.2.2 TimescaleDB

A continuacion, se analiza en profundidad TimescaleDB, ya que es la tecnologia que se ha utilizado en el
proyecto:

1. Arquitectura y fundamentos de TimescaleDB:

o Hypertables: Una hypertable se define como una tabla virtual que se particiona en multiples
tablas fisicas denominadas chunks. Cada chunk corresponde a un intervalo de tiempo y puede
distribuirse en multiples nodos [27]. La definicion de una hypertable se realizaria de la siguiente
manera:

SELECT create_hypertable('conditions', 'time');

Figura 3-1. Definicion de una Hypertable.

Se crea una hypertable a partir de una tabla normal creada anteriormente de nombre
“conditions” y se le afiade la columna temporal obligatoria que es la que contiene los timestamp.

o Indexacion: Para agilizar consultas por rango temporal, TimescaleDB usa indices compuestos
por la columna de timestamp mas otra columna clave. Un ejemplo seria este:

CREATE INDEX OMN readings (time DESC, sensor _id);

Figura 3-2.Crear Indice.

Se crea un indice en “readings” en orden descendente porque los filtros temporales son
prioritarios y luego la segunda columna del indice es de “sensor_id”.

o Compresion: TimescaleDB utiliza un subsistema de compresion que aplica algoritmos de tipo
RLE para reducir el tamafio de los historicos. Un ejemplo seria este:

ALTER TABLE readings SET (

timescaledb.compress,

timescaledb.compress orderby = "time DESC’,
timescaledb.compress_segmentby = ‘sensor_id’
)
SELECT add_compression_policy('readings’, compress_after => INTERVAL '7 days');

Figura 3-3.Compresion datos.

Con esto conseguiremos que las lecturas de hace mas de 7 dias se compriman, manteniendo los
datos actualizados y optimizando el espacio en disco.

o Agregados Continuos: Nos permite preprocesar y almacenar resultados de consultas de
agregacion en ventanas temporales, reduciendo drasticamente el tiempo de ejecucion para
consultas historicas frecuentes. Un ejemplo seria:

16

Estado del Arte

CREATE MATERIALIZED VIEW readings_hourly
WITH (timescaledb.continuous) AS
SELECT time_bucket('1l hour', time) AS hour,
sensor_id,

AVG(temperature) AS avg_temp,
AX(temperature) AS max_temp,
IN(temperature) AS min_temp

FROM readings

GROUP BY hour, sensor_id;

Figura 3-4.Creacion de Vista Materializada.

La vista materializada “readings_hourly” se actualizard de forma incremental a medida que
lleguen datos nuevos.

o Politicas de retencion y particionado: Se pueden aplicar reglas automaticas de eliminacién
de chunks antiguos: Un ejemplo seria:

SELECT add retention policy('readings’, drop after =» INTERVAL ‘3@ days');

Figura 3-5.Creacion de politica de eliminacion.

Ahora, cualquier chunk cuya ventana temporal supere los 30 dias se eliminara, manteniendo un
tamarfio de base de datos controlado.

o Paralelismo en consultas: TimescaleDB explota las capacidades de PostgreSQL para
consultas paralelas, de forma que las agregaciones sobre chunks multiples se ejecutan en
paralelo, reduciendo tiempos de respuesta en analisis de grandes volimenes.

2. Comparativa de rendimiento

Diversos estudios han comparado el rendimiento de TimescaleDB con otras bases de datos de series temporales
como InfluxDB y QuestDB. A continuacion, se presentan los hallazgos més relevantes:

o Velocidad de insercion:

InfluxDB logra una tasa de insercion de aproximadamente 330.000 puntos de datos por segundo con 4
millones de series temporales Unicas, mientras que TimescaleDB alcanza unos 480.000 puntos por
segundo. Es cierto que InfluxDB tiene un rendimiento algo mejor en inserciones puras debido a su
motor TSM optimizado, TimescaleDB puede mejorar su rendimiento con la configuracion adecuada de
algunos parametros, el uso de hypertables multimodo y mayor paralelismo [28].

Costo de almacenamiento:

TimescaleDB puede alcanzar ratios de compresion de 3:1 a 5:1 en datos histdricos. Aunque InfluxDB
también incorpora compresion, en escenarios de datos heterogéneos, se ve superada por la eficiencia de
TimescaleDB [29].

Flexibilidad del lenguaje SQL.:

A diferencia de InfluxQL" (InfluxDB) o PromQL? (Prometheus), TimescaleDB soporta SQL estandar
con extensiones propias. Esto facilita la integracion con sistemas existentes, herramientas de Bl y
arquitecturas que ya emplean PostgreSQL [30].

7 Lenguaje de consulta de tipo SQL disefiado para interactuar con InfluxDB, una base de datos de series temporales.
8 Lenguaje de consulta funcional utilizado para interrogar y agregar datos de series temporales recopilados por el sistema de monitorizacion
Prometheus

16

Almacenamiento y optimizacion de series temporales de medidas ambientales mediante TimescaleDB7

17 1

o Consultas de agregados:

TimescaleDB destaca en consultas complejas sobre rangos largos de tiempo gracias a sus agregaciones
continuas. Estas vistas materializadas incrementales permiten tiempos de respuesta muy reducidos, en
el orden de milisegundos, para estadisticas diarias o semanales. Ademas, las politicas de agregacion
continua han sido optimizadas en versiones recientes, reduciendo el uso de recursos del sistema y
mejorando la eficiencia [31].

3. Caso de uso en monitorizacion de temperatura y humedad

En este trabajo, la arquitectura que se propone requiere gestionar las lecturas de temperatura y humedad que
envia el sensor DHT11 cada cierto intervalo de tiempo. Las operaciones vitales que se beneficiaran de
TimescaleDB son:

o Inserciones continuas: El script de JavaScript ejecuta una insercion por cada lectura recibida por el
sensor DHT11. Gracias a la particion por chunk, estas medidas se dirigen siempre al chunk del dia en
curso, reduciendo la contencidn de indices.

o Consulta de valores recientes: Si se desea obtener los valores de las mediciones de la tltima hora es
bastante sencillo ya que basta con filtrar en la hypertable aprovechando los indices en la columna “time”.
Un ejemplo de lo anterior seria:

SELECT *# FROM sensor_data
WHERE time = NOW() INTERVAL hour
ORDER BY time DESC;

Figura 3-6. Ejemplo Filtrado por time.

o Agregados diarios/semanales: Se hace uso de las “Vistas Materializadas™ para obtener promedios,
maximos y minimos, con actualizaciones incrementales. Un ejemplo de lo anterior seria:
CREATE MATERIALIZED VIEW metrics_hourly
WITH (timescaledb.continuous) AS
SELECT
sensor_id,
time_bucket('1 hour', time) AS bucket
AVG(value) AS avg_value,
MAX({value) AS max_value,
MIN{value) AS min_value
FROM sensor_data
GROUP BY sensor_id, bucket
WITH DATA;

Figura 3-7. Ejemplo de Agregacion continua.

3.4 Sistemas de Caché en entornos loT: Enfoque en Redis.

En soluciones IoT donde la base de datos de series temporales recibe miles de lecturas diarias y tiene que atender
consultas de multiples usuarios, la incorporacion de un sistema caché en memoria es esencial para reducir la
latencia de consultas frecuentes o complejas. En esta seccion del trabajo, se analiza el papel de la memoria caché,
se comparan alternativas y se profundiza en Redis como tecnologia elegida.

3.41 Rol de la Memoria Caché

Un Sistema de caché interpuesto entre la capa de almacenamiento permanente (Base de datos TimescaleDB) y
las capas de consultas tiene las siguientes funciones:

18 Estado del Arte

e Reduccion de latencia:

Al almacenar en la memoria caché los resultados de consultas ya ejecutadas como por ejemplo la
temperatura media diaria, cuando se realiza una consulta idéntica, se devuelve el resultado directamente
desde el caché en lugar de volver a tener que calcularlo en la base de datos permanente.

e Escalabilidad Horizontal:

Al desplegar instancias replicadas de un sistema de caché, es posible distribuir la carga de lectura del
sistema. El caché puede repetirse en multiples réplicas para servir muchas peticiones simultaneas sin
saturar la capa persistente.

e Menos carga en la base de datos:

La memoria caché hace de primer frente de respuesta, lo que disminuye el numero de consultas a
TimescaleDB y la reserva para operaciones criticas o consultas complejas no cacheadas.

e Control de expiracion y consistencia:

El sistema caché debe tener politicas que indiquen cuando un valor almacenado es obsoleto. En este
caso, un TTL corto de unos 60 segundos para datos recientes puede asegurar que las lecturas reflejan
cambios casi en tiempo real.

3.4.2 Comparativa general de soluciones de Sistemas Caché

A continuacion, se listan las distintas soluciones de sistemas caché:
e Memcached
o Descripcion: Es un almacén de datos en la memoria de alto rendimiento y facil de usar [32].

o Ventajas: Tiempos de respuesta por debajo del milisegundo, simplicidad y facilidad de uso,
escalabilidad y buena comunidad [32].

o Desventajas: No tiene persistencia incorporada, no soporta estructuras complejas y no admite
replicacion nativa ni clustering” automéatico [33].

e Redis

o Descripcion: Es un almacén de estructura de datos de valores de clave en memoria rapido y
de codigo abierto [34].

o Ventajas: Desempefio muy rapido, estructuras complejas de datos en memoria, versatilidad,
facilidad de uso, replicacion asincrona, persistencia con snapshots' y gran compatibilidad con
muchos lenguajes de programacion [34].

o Desventajas: Consumo de memoria relativamente elevado.
e Apache Ignite

o Descripcién: Es una plataforma distribuida en memoria que funciona como caché, base de
datos y sistema de procesamiento [35].

o Ventajas: Integracion de caché y procesamiento, tolerancia a fallos y persistencia opcional
[35].

o Desventajas: Complejidad de despliegue, curva de aprendizaje elevada y sobredimensionado
para loT simple.

o Couchbase (en modo caché)

o Descripcién: Base de datos NoSQL que mediante su modulo de “couchbase bucket” en

9 Técnica de andlisis de datos que agrupa elementos similares en conjuntos denominados "cltsteres".
10 Copia logica de un sistema de archivos, base de datos o incluso una maquina virtual en un momento especifico.

18

Almacenamiento y optimizacion de series temporales de medidas ambientales mediante TimescaleDB9

17 1

memoria, ofrece funcionalidades de caché [36].

o Ventajas: Integracion nativa con capa de persistencia en disco, alto rendimiento, desarrollo
simple, versatil [36].

o Desventajas: Complejidad de configuracion.

En entornos IoT donde prima la alta velocidad y se requiere de una caché de bajo nivel, Redis se considera la
mejor opcidn, debido al amplio conjunto de estructuras de datos que maneja y a su modelo de replicacion y
persistencia configurable.

343

Arquitectura de Redis y caracteristicas relevantes

Redis es una base de datos en memoria orientada a pares clave-valor con persistencia opcional.

3.4.31

Estructura de datos

En esta seccion se listaran los distintos tipos de datos que maneja Redis [37]:

3.4.3.2

Strings: Estructura de datos binaria segura. Puede almacenar cualquier tipo de datos: una cadena, un
entero, un valor de punto flotante, una imagen JPEG, un objeto Ruby serializado o cualquier otra cosa
que desee que tenga.

Hashes: Almacena un conjunto de pares campo-valor.

Lists: Contienen colecciones de elementos de cadena ordenados segtin su orden de insercion.

Sets: Almacena un conjunto tinico de miembros.

Sorted Sets: Contienen un conjunto tmico de miembros ordenados por puntuaciones de punto flotante
Bitmaps: Es una estructura de datos compacta para almacenar logica y estados binarios.

Bitfields: Ofrecen una forma eficiente y compacta de implementar multiples contadores en una sola
matriz.

HyperLogLog: Es una estructura de datos probabilistica que se usa para contar valores unicos con un
tamafio de memoria constante.

Geospatial indexes: Proporcionan una forma extremadamente eficiente y sencilla de gestionar y
utilizar los datos geoespaciales en Redis.

Streams: Es una estructura de datos increiblemente potente para gestionar flujos de datos de alta
velocidad.

Persistencia

Redis ofrece dos modos principales [38]:

AOF (Append Only File):

Registra cada operacion de escritura en un archivo de disco en tiempo real. Este mecanismo garantiza
que, al reiniciar el servidor, todas las operaciones pueden volverse a ejecutar, recuperando asi los datos
incluso después de una caida abrupta.

RDB (Redis Database Backup):

Genera snapshots periodicos de la base de datos en un archivo con extension “.rdb”, configurables por
nameros de escrituras o intervalos de tiempo. Su ventaja es el bajo impacto en el rendimiento, pero no
garantiza la persistencia de cada operacion entre snapshots.

20 Estado del Arte

3.43.3 Replicacion y alta disponibilidad

Redis ofrece multiples mecanismos para garantizar alta disponibilidad y tolerancia a fallos. Entre ellos destacan
tres enfoques [39]:

e Redis Master-Slave:

Un nodo maestro (master) gestiona las operaciones de escritura y replica los cambios en uno o mas
nodosos esclavos (slaves), permitiendo lecturas escalables.

Read/Writes i
Client + r] Redis Master

Replication Replication

Reads
- Redis Slave Redis Slave
Reads
Client

Figura 3-8. Redis Master-Slave.

e Redis Sentinel:

Monitorea nodos maestros/esclavos, detecta fallos y promueve un esclavo a maestro si el maestro
original cae.

Sentinel nodes

‘ Master node
~

replication

Slave nodes (replicas)

Figura 3-9. Redis Sentinel.
o Redis Cluster:

Fragmenta el espacio de claves en slots'! y distribuye nodos maestros y esclavos para escalabilidad y
tolerancia a fallos.

11 Representan la manera en que Redis divide el espacio de claves para distribuir las operaciones entre los diferentes nodos del cltster.

20

Almacenamiento y optimizacion de series temporales de medidas ambientales mediante TimescaleDB1

17 1

‘ Cliente ‘

Redis cluster
Master 1 Master 2 Master 3
| . |
Replica Replica Failover Replica
Slave 1 Slave 2 Slave 3

Figura 3-10. Redis Cluster.

3.44 Uso de Redis como capa caché en monitorizacion ambiental.

En el escenario de recopilacion de datos de temperatura y humedad, las consultas mas frecuentes podrian
clasificarse en:

e Lecturas en vivo: Solicitudes de las lecturas mas recientes para graficar en tiempo real.
e Agregados de corto plazo: Promedios, minimos y méaximos de la tiltima hora.
e Agregados prolongados: Estadisticas diarias o semanales.

e Datos historicos puntuales: Lectura de eventos especificos o comparaciones.

Redis puede cachear las lecturas en vivo almacenando en una lista o Sorted los ultimos N valores ordenados por
timestamp y cuando un cliente solicite los “altimos 15 valores”, la aplicacion lee directamente del caché. Para
los agregados de corto plazo, se calcula la consulta en TimescaleDB y se almacena el resultado en Redis con su
clave y con TTL de 60 segundos para que la clave expire al pasar ese tiempo y la siguiente consulta recalcule.
En el caso de los agregados prolongados se utilizarian vistas materializados y un TTL superior, de 3600 segundos
por ejemplo ya que las estadisticas horarias para dias anteriores cambian solo cuando TimescaleDB recalcule la
vista materializada. Por ultimo, para los datos histéricos puntuales, como no se consultan con frecuencia, no
hace falta cachearlos y se dirige la solicitud directamente a TimescaleDB.

3.5 Contenerizacion y Despliegue: Enfoque en Docker

El uso de contenedores ha revolucionado la forma de desarrollar, probar y desplegar aplicaciones, ofreciendo
entornos reproducibles, aislados y ligeros. En proyectos [oT que integran multiples componentes, Docker facilita
la orquestacion y gestion de dependencias.

3.5.1 Concepto de contenedor y diferencias con maquinas virtuales

Los contenedores docker proporcionan un entorno aislado para ejecutar aplicaciones, incluyendo todos los
componentes necesarios para su funcionamiento, como librerias y configuraciones. Esta solucion, mas ligera
que las maquinas virtuales tradicionales, se beneficia del uso compartido del kernel'? del sistema operativo, lo
que reduce el consumo de recursos y acelera el inicio del servicio.

12 Parte fundamental del sistema operativo que se ejecuta en modo privilegiado para gestionar los recursos del sistema y permitir la
comunicacion entre el hardware y el software.

-2 Estado del Arte

Las principales ventajas de emplear Docker son [40]:

e Aislamiento: Cada contenedor corre en su espacio aislado, evitando conflictos de versiones o puertos
TCP.

Portabilidad: Los contenedores construidos en un sistema operativo (Windows, macOS, Linux) se
despliegan igual en otro host con Docker instalado.

Reproducibilidad: Garantiza que las versiones de dependencias y configuraciones sean idénticas en
todos los entornos.

e Ligereza: Un contenedor ocupa megabytes'>, mientras que una maquina virtual ocupa gigabytes'.

Escalabilidad: Con herramientas de orquestacion, se puede conseguir balancear la carga y mantener
una alta disponibilidad mediante la replicacion de contenedores.

3.5.2 Docker en arquitecturas loT

En 10T, Docker se utiliza como herramienta habitual para desplegar:

o Servidores de bases de datos: InfluxDB, PostgreSQL etc.

Sistemas de caché: Memcached, Redis.

Dashboards y aplicaciones web: Grafana, Node-RED, Kibana.

APIs y microservicios: Servicios REST que reciben datos de sensores y los encaminan a la base de
datos

Gateways o microservicios de edge computing: Raspberry Pi o micro-PCs que ejecutan contenedores
para preprocesar datos localmente.

Una de las ventajas clave que ofrece Docker en el contexto IoT es la facilidad para crear y gestionar redes
internas virtuales entre contenedores. Esta funcionalidad permite que los diferentes servicios que conforman la
arquitectura de solucion [oT se comuniquen entre si de forma directa, segura y eficiente. Docker permite definir
redes personalizadas en las que cada contenedor puede ser identificado por un nombre de servicio, lo cual
simplifica enormemente la configuracion de los sistemas distribuidos [41].

En el caso de este proyecto, donde un contenedor ejecuta un script de adquisicion de datos, otro gestiona la base
de datos de series temporales (TimescaleDB) y un tercero actia como caché (Redis), todos estos servicios
pueden intercambiar informacion sin necesidad de exponer sus puertos al exterior. Esto mejora la seguridad,
favorece el aislamiento del sistema y reduce la necesidad de configuraciones de red complejas.

3.5.3 Docker Compose para orquestacion local

En entornos de desarrollo y prueba, Docker Compose es la herramienta que permite desplegar multiples
contenedores mediante un solo fichero llamado “docker-compose.yml”.

Las principales partes de este archivo son [42]:
e Version: Define la version del esquema de Compose. Se pone al principio.

yam

version:

Figura 3-11. Docker Compose-Version.

13 Unidad estandar en la informatica y la tecnologia digital que indica el tamafio de un archivo o la capacidad de una memoria de datos.
Equivale a 1 millén de bytes.
14 Unidad de medida de almacenamiento de datos que equivale a 1.000 millones de bytes.

22

Almacenamiento y optimizacion de series temporales de medidas ambientales mediante TimescaleDB3

17 1

e Services: Es la seccion principal donde se especifican los contendores que forman parte del sistema,
junto con su configuracion.

services:
web:

environment:

POSTGRES_PASSWORD: example

Figura 3-12.Docker Compose-Services.

e Volumes: Permite definir volumenes persistentes que pueden ser montados por uno o mas
contenedores.
volumes :

- timescale data:/var/lib/postgresgl/data

Figura 3-13.Docker Compose-Volumes.

e Networks: Define redes personalizadas para conectar servicios, aunque Docker Compose crea una por
defecto si no se especifica ninguna. En el ejemplo de abajo el servicio web puede comunicarse solo con
el servicio app porque pertenecen a la misma red virtual.

web:
image: nginx
networks:

- frontend

app:
build: ./app
networks:
- frontend
- backend

Figura 3-14.Docker Compose-Networks.

e Environment: Las variables de entorno se puede definir directamente sobre el archivo o importarse
desde un archivo de extension “.env”.

environment:
POSTGRES USER: tfg user
POSTGRES PASSWORD: tfg pass
POSTGRES DB: tfg db

Figura 3-15. Docker Compose-Environment.

e Depends_on: Establece el orden de inicio de los servicios, no garantiza que uno este ya levantado, pero
si que se ha iniciado. En el ejemplo de abajo el servicio backend debe esperar a que inicien los servicios
db y redis.

24

Estado del Arte

backend:
build: ./backend

depends_on:

F
]
[
m
m
1]
I
I
w
[
I
S
m

Figura 3-16. Docker Compose-Depends _on

3.5.4 Beneficios y limitaciones de Docker en loT

A continuacion, se analizan los beneficios y limitaciones de Docker en entornos IoT.

Los beneficios son los siguientes:

e Aislamiento de entornos: El contenedor del script en JavaScript no entrard en conflicto con las
versiones de JavaScript o librerias instaladas en el host.

¢ Reproducibilidad: Compartir el repositorio con el docker-compose y los dockerfile permite a cualquier

persona reproducir el entorno tal cual sin tareas manuales de configuracion.

e Despliegue rapido: Con un solo comando “docker-compuse up -d”, se inician todos los servicios

interconectados.

Las limitaciones son las siguientes:

e Sobrecarga en dispositivos: En plataformas hardware limitadas (poca CPU 0 RAM).

e Persistencia de datos: Si no se configura correctamente los volumenes, los datos pueden perderse al

destruir los contenedores.

e Complejidad inicial: Curva de aprendizaje un poco elevada para usuarios nuevos.

En conclusion, se han analizado las tecnologias y enfoques existentes en la gestion de series temporales y
almacenamiento en caché. Esta revision ha permitido identificar las ventajas y limitaciones de diferentes
propuestas. Como resultado, se ha justificado la seleccion de TimescaleDB, Redis y Docker como base de la

solucion.

24

Almacenamiento y optimizacion de series temporales de medidas ambientales mediante TimescaleDB35

1 7™ 1

26 Desarrollo del proyecto

4 DESARROLLO DEL PROYECTO

A continuacion, en este capitulo clave del proyecto se describiran varios aspectos esenciales: La arquitectura
general del sistema, Adquisicion y tratamiento de datos, Persistencia de datos en TimescaleDB, Implementacion
de la capa caché con Redis, Visualizacion de datos mediante API REST, Contenerizacion y despliegue y
Monitorizacion y logs.

4.1 Arquitectura General del Sistema
El sistema desarrollado integra la adquisicion de los datos ambientales, pasando por su almacenamiento en una
base de datos y terminando por una consulta optimizada mediante una capa de caché.

Para ello se han utilizado tecnologias de cdédigo abierto y de contenedores, garantizando asi un despliegue
modular y facilmente reproducible.

Los componentes principales son los siguientes:
e Hardware: Placa Arduino con sensor DHT11 conectado por puerto USB al host.

o Software de adquisicion de datos: Un servicio Node.js (busConnector.js) que lee los datos del puerto
serie y los inserta en la base de datos.

o Base de datos de series temporales: TimescaleDB, desplegada en un contenedor Docker y cuya
funcion es almacenar los datos de humedad y temperatura.

e Capa de caché: Redis, para almacenar temporalmente los resultados de las consultas més frecuentes,
reduciendo la latencia.

e API REST: Servicio Node.js (index.js) que expone rutas GET para consultas con y sin caché,
documentadas mediante swagger.

e Orquestacion: Docker Compose, define y lanza los tres servicios principales: API Nodejs,
TimescaleDB y Redis.

En el siguiente diagrama se ilustra de manera sencilla la arquitectura del sistema:

Woe s -[e-a

Sensor busConnector TimescaleDB API Usuario
DHT1 (Node.js) REST final
(caché)

Figura 4-1. Arquitectura General del Sistema

26

Almacenamiento y optimizacion de series temporales de medidas ambientales mediante TimescaleDB7

17 1

4.2 Adquisicion y tratamiento de datos

Por un lado, la captura de datos se realiza mediante la placa Arduino, que estd conectada al host a través del
puerto mapeado “dev/ttyUSBO0”. Por otra parte, el sensor tiene un sketch que lo programa para tomar las medidas
de temperatura y humedad cada segundo y enviarla por el puerto serial.

El servicio Node.js a través del busConnector.js realiza las siguientes acciones:

e Abre el puerto serie y escucha tramas del sensor DHT11 donde cada par de lecturas recibidas
corresponde a humedad y temperatura.

o Inserta los valores en la tabla medidas_sensor de la base de datos, acompafiados de una marca de tiempo
generada automaticamente.

>_js
busConnector.js
pd
L
= W m /dev/ttyUSBO

g

medidas_sensor
Marca de tiempo | Humedad

\. s | 2024-04-2412:0:00 55
”
22,3

Figura 4-2. Adquisicion y Tratamiento de datos

El modulo busConnector.js es responsable de recibir los datos del sensor desde el puerto serie ¢ insertarlos en la
base de datos. Algunos puntos importantes de su implementacion son los que se muestran en la siguiente tabla:

Aspecto Descripcion

Lectura del puerto serie Usa la libreria serialport para abrir el dispositivo
/Dev/ttyUSB0O a 9600 a una velocidad de 9600
baudios que coincide con la del sensor.

Procesamiento de datos Almacena primero la humedad y después Ila
temperatura antes de la insercion. Ademas, aplica un
pequetio filtro para descartar datos no numéricos.

Insercion en base de datos Emplea Knex para insertar los registros de humedad
y temperatura en la tabla medidas_sensor con una
marca de tiempo.

Gestion de errores Maneja eventos de error del puerto serie y captura
excepciones en la insercion.

Tabla 1. Aspectos busConnector.js

28 Desarrollo del proyecto

4.3 Base de datos de series temporales
La base de datos TimescaleDB se ejecuta como un servicio Docker, inicializado con un usuario, contrasefia y
nombre de base de datos definidos previamente en variable de entorno.

La creacion de la tabla medidas_sensores se realiza mediante el script run.sh que automatiza la creacion de la
tabla y su conversion a hypertable, optimizandola para manejar series temporales.

El almacenamiento en una tabla optimizada para manejo de series temporales permite:
o Escalabilidad en la ingesta de datos
o Consultas rapidas mediante indices temporales.

e La creacion de vistas materializadas (vistaMaterialazada.sh) que calculan estadisticas temporales que
se actualizan de forma continua.

En la siguiente tabla se muestran las vistas materializadas que se han creado para este proyecto:

Nombre Vista Materializada Descripcion Meétricas calculadas

temp y humed porMin Calcula las métricas para el | Temperatura media, Humedad
intervalo de tiempo de un minuto | media, Maxima Temperatura y

Méxima Humedad
temp y humed porHora Calcula las métricas para el | Temperatura media, Humedad
intervalo de tiempo de una hora media, Maxima Temperatura y

Maxima Humedad
temp y humed porDia Calcula las métricas para el | Temperatura media, Humedad
intervalo de tiempo de un dia media, Maxima Temperatura y

Maxima Humedad

Tabla 2. Vistas Materializadas

4.4 Implementacion de la capa caché con Redis

Redis se ejecuta también como un servicio Docker independiente. Al realizarse una consulta, el sistema primero
busca en Redis. Si el dato existe se responde inmediatamente, pero en caso contrario, se consulta a la base de
datos, se almacena en caché y se devuelve al cliente.

La capa caché realiza las siguientes funciones:
e Almacenar resultados de endpoints'> como /concache-50, /temp-25-cache, etc.

e Se marcan los datos con un TTL de 60 segundos para que se refresquen periodicamente.

4.5 Visualizacion de datos mediante APlI REST

El servicio index.js implementa una API REST con las siguientes caracteristicas:
e Conexion a PostgreSQL a través de Knex.

e Documentacion interactiva con Swagger.

15 Es un punto final especifico, a menudo una API, que devuelve datos que han sido previamente almacenados en caché para mejorar el
rendimiento y reducir la carga del servidor

28

Almacenamiento y optimizacion de series temporales de medidas ambientales mediante TimescaleDB9

1 7™ 1

e Endpoints GET diferenciados entre consultas con caché y sin caché.
e Consultas avanzadas apoyadas en vistas materializadas para estadisticas por minuto, hora y dia.

A continuacion, se muestran imagenes de la interfaz Swagger Ul del proyecto:

Mi trabajo de Fin de Grado @ @@

Aplicacion que recibe datos de temp/humed de un sensor DHT11 y los guarda en una base de datos de series temporales con caché

default ~

| ﬂ /concache-58 Obtener los 50 ultimos valores con caché v |
| “ /concache-25 Obtener los 25 ultimos valores con caché v |

| /temp-50-cache Obtener 50 valores ordenados por temperatura decreciente v |
| ﬂ /temp-25-cache Obtener 25 valores ordenados por temperatura decreciente v |

Figura 4-3. Interfaz Swagger Ul 1

‘“ /humed-50-cache Obtener 50 valores ordenados por humedad decreciente iV ‘
‘“ /humed-25-cache Obtener 25 valores ordenados por humedad decreciente iV ‘
‘ﬂ /valores-minuto-cache Obtener temperaturay humedad por minuto con cache A ‘
‘ﬂ /sincache-50 Obtener los 50 ultimos valores sin caché v ‘
‘ﬂ /sincache-25 Obtener los 25 ultimos valores sin caché v ‘
‘ﬂ /temp-50 Obtener 50 valores sin cache ordenados por su temperatura v ‘
Figura 4-4. Interfaz Swagger UI 2
‘ /temp-25 Obtener 25 valores sin cache ordenados por su temperatura A4 ‘
‘ /humed-50 Obtener 50 valores sin cache ordenados por su humedad iV ‘
‘ /humed-25 Obtener 25 valores sin cache ordenados por su humedad A4 ‘

‘ /valores-minuto-sincache Obtener temperatura y humedad por minuto sin cache

Figura 4-5. Interfaz Swagger UI 3

4.6 Contenerizacion y despliegue

El proyecto ha sido preparado y configurado para un despliegue reproducible mediante Docker:

e En el Dockerfile se define la imagen Node.js, instalando dependencias y configurando variables de
entorno previamente definidas en datosEntorno.env

e En el Compose.yaml se definen los servicios principales que se muestran en la siguiente tabla:

Servicio Imagen/base Puertos Rol

30

Desarrollo del proyecto

nodejs Nodel8 +pm?2 3000 APIREST +
busConnector
seriesTemporalesDB timescale/timescaledb- 5432 Base de datos de
ha:pgl4-latest series temporales
redisCache redis:latest 6379 Capa de caché

Se hace uso en el Node.js del administrador de procesos PM2 para:

Tabla 3. Servicios en Docker-Compose

e Ejecutar el servidor y el busConnector.js como procesos independientes definidos en el archivo

ecosystem.config.js.

e Reiniciar los servicios automaticamente en caso de fallo.
e Limitar el consumo de memoria mediante parametros.

e Gestionar logs de cada proceso de forma centralizada.

Por ultimo, el despliegue se realiza ejecutando los siguientes comandos:

1. Construyo la imagen: sudo docker-compose build.

2. Levanto los servicios: sudo docker-compose up -d.

En este capitulo, se ha detallado el proceso de construccion del sistema, desde la captura de datos hasta su
almacenamiento y consulta. La integracion de Arduino, TimescaleDB, Redis y Docker asegura la coherencia de
la propuesta. Una vez desplegado el sistema, se avanza hacia su validacion experimental en los siguientes

apartados.

30

Almacenamiento y optimizacion de series temporales de medidas ambientales mediante TimescaleDB1

1 7™ 1

32 Pruebas y Validaciones

5 PRUEBAS Y VALIDACIONES

El objetivo de este capitulo es demostrar el correcto funcionamiento del sistema y validar cada uno de los
componentes.

Las pruebas se realizaron en un entorno controlado utilizando herramientas especificas para verificar la
adquisicion de datos, su almacenamiento, la correcta exposicion mediante la API y la optimizacion de
rendimiento.

5.1 Entorno de pruebas

Para las validaciones se utiliz6 el siguiente entorno:

Componente Version

Node.js v18.19.1

PM2 Ultima estable

Redis Ultima estable

PostgreSQL Ultima estable

Docker v24.0.7

Hardware Placa Arduino + Sensor DHT11
Ubuntu v24.04.1 LTS

Tabla 4. Entorno de pruebas

En la siguiente imagen se muestran los contenedores activos usados en el entorno de pruebas:

IMAGE COMMAND SERVICE
misoftware-nodejs "docker-entrypoint.s.." nodejs

redis:latest "docker-entrypoint.s.." redisCache

seriesTemporalesDB timescale/timescaledb-ha:pgl4-latest "/docker-entrypoint..." seriesTemporalesDB

Figura 5-1. Contenedores Entorno Pruebas

5.2 Pruebas de adquisicion de datos

Se verifico el funcionamiento del servicio busConnector.js:

e Con el sensor DHT11 conectado al puerto /dev/tty/USB0, se recibieron tramas de datos de humedad y
temperatura como se muestra en la Figura 5-2.

32

Almacenamiento y optimizacion de series temporales de medidas ambientales mediante TimescaleDB3

-07-28T08:1
-07-28T08:1
-07-28T08: 1
-07-28T08:1

: PM2
: PM2
: PM2
: PM2

log:
log:
log:
log:

17 1

S sudo docker-compose logs
Launching in no daemon mode
App [api-server:0] starting in -cluster mode-
App [busConnector:1] starting in -cluster mode-
App [busConnector:1] online

-f nodejs

(S ST ST S V]
[cloio ool

(SR N S]

v bnunounon

-07-28T08 : PM2 log: App [api-server:8] online
@serialport/parser-readline: [class ReadlineParser extends DelimiterParser]
Puerto serie abierto correctamente (/dev/ttyUSBO)
Escuchando por el puerto interno de la red docker:
Datos recibidos del puerto serie: 53

Humedad recibida: 53%

3000

Datos recibidos del puerto serie: .4

Temperatura recibida: 30.4°C
Datos insertados correctamente en
Datos recibidos del puerto serie:
Humedad recibida: 53%

Datos recibidos del puerto serie: .4
Temperatura recibida: 30.4°C
Datos insertados correctamente en
Datos recibidos del puerto serie:
Humedad recibida: 53%

Datos recibidos del puerto serie: 30.3
Temperatura recibida: 30.3°C
Datos insertados correctamente en

base de datos

base de datos

la base de datos

Figura 5-2. Comprobacion de datos

e Sevalidd que los valores numéricos se procesan correctamente y se insertan en la tabla medidas_sensor
como se muestra en la figura 5-3 donde le pido que me devuelva las ultimas 10 filas de la tabla.

timestamp | humedad | temperatura
08:17:48.633+00
08:17:47.606+00
08:17:46.606+00
P8:17:45.58+00
08:17:44.579+00
08:17:43.554+00
08:17:42.552+00
08:17:41.526+00
08:17:40.525+00
08:17:39.5+00

|
1
R B B B N

-

-
1 1

1
o oo oo
|
1

-

1
=]
-

1

-

]
oD

|
1
0o 00 00 00 00 00 00 00 00 @

W W W W W W W w
(e B s Bl o o s o e s

R N R R SR R ¥

2025
2025
2025
2025
2025
2025-
2025
2025
2025
2025
-

0
0
0
0
0
0
0
0
0
0
0

=t
Q
=
¥}

o —

Figura 5-3. Valores de la tabla medidas_sensor

5.3 Pruebas de almacenamiento y vistas materializadas

Una vez iniciada la base de datos TimescaleDB y ejecutados los scripts correspondientes, se comprobo:

e Lacreacion de la tabla medidas sensor como hypertable. En la figura 5-4 muestro que existe la tabla y
su estructura y en la figura 5-5 compruebo que es una hypertable.

34 Pruebas y Validaciones

seriesTemporalesDB=# \d medidas_sensor
Table "public.medidas sensor"
Column | Collation | Nullable | Default

timestamp timestamp with time zone
humedad real
temperatura real

seriesTemporalesDB=# SELECT * FROM timescaledb information.hypertables;

hypertable_schema | hypertable_name | owner | num_dimensions | num_chunks | compression_enabled | is_distributed |
——————————————————— B e e e
public | medidas_sensor | postgres | 1 1 |
1 row

Figura 5-5. Hypertable medidas sensor

e La correcta creacion de las vistas materializadas: temp y humed porMin, temp y humed_porHora'y
temp_y _humed_porDia explicadas en el apartado 4.3 de este documento. Se muestran en la figura 5-6.
seriesTemporalesDB=# \dv
List of relations

| temp vy humed pordia view | postgres
| temp y humed porhora view | postgres
| temp_y humed pormin view | postgres

Figura 5-6. Vistas materializadas

o Consultas SQL de prueba para validar los resultados agregados por minuto de una de las vistas
materializadas, en este caso la de temp y humed porMin. Se muestra en la figura 5-7.

seriesTemporalesDB=# SELECT * FROM temp_y humed porMin ORDER BY time DESC LIMIT 5;
avg_humed | max_temp | max_humed

.969431716509476 50.957951401778786
.907554730062902 50.048913855341524
.907554730062902 50.048913855341524
.907554730062902 50.048913855341524
.907554730062902 50.048913855341524

02
02
02
02
02

2
£
2
£
2
[4
2
£
2
£

P

Figura 5-7. Consulta datos a vista materializada

34

Almacenamiento y optimizacion de series temporales de medidas ambientales mediante TimescaleDB35

17 1

e Consultas SQL de prueba para validar que la vista se actualiza, en este caso, inserto dos valores muy
altos de temperatura y humedad (99) para luego consultar en la vista si se han actualizado como se ve
en la figura 5-8.

seriesTemporalesDB=# INSERT INTO medidas_sensor (humedad, temperatura) VALUES (99, 99);

INSERT @ 1

seriesTemporalesDB=# SELECT * FROM temp_y humed porMin ORDER BY time DESC LIMIT 5;
avg_temp avg_humed | max_temp | max_humed

]
'

30.969431716509476 | 50.957951401778786
31.093557570958556 | 50.957951401778786
31.093557570958556 | 50.048913855341524
31.093557570958556 | 50.048913855341524
31.093557570958556 | 50.957951401778786

]
'

oo o @ @
R I I N N
|
)
PO R RN R
o o o @

[V R RNV Ve R |
1
oo o oo
—_ =~ =
i

VTR RN

—
Q
=
i

Figura 5-8. Actualizacion de Vistas Materializadas.

5.4 Pruebas de la API REST

Para comprobar que la API REST funciona, las rutas expuestas en index.js fueron validadas utilizando Swagger
UL Se probaron tanto endpoints con caché (/concache-25), /temp-25-concache, etc.) como sin caché (/sincache-
25, temp-25, etc.).

A continuacion, se muestran imagenes de los endpoints con caché:

e En/concache-25 obtenemos los tltimos 25 valores de temperatura y humedad:

Request URL

http://localhost:3608/concache-25

Server response
Code Details
200

Response body

"valores25": [

"timestamp": "2025-07-28T08:57:43.074Z",
"humedad" : '
"temperatura":

"timestamp": "2025-07-28T08:57:42.072Z",
"humedad
"temperatu

"timestamp": "2025-07-28708:57:41.0462",
"humedad" :
"temperatura":

"timestamp": "2025-07-28T08:57:40.046Z",
"humedad" :
"temperatura":

"timestamp": "2025-87-28T08:57:39.020Z",
"humedad" : '
"temperatura":

Figura 5-9. Comprobacion de /concache-25

36 Pruebas y Validaciones

o En /temp-25-cache obtenemos 25 valores ordenados por temperatura decreciente:

Request URL

http://localhost:3000/temp-25-cache

Server response

Code Details

2l Response body

"timestamp":
"humedad" :

"2025-07-26T16:01:26

"temperatura”:

"timestamp”:
"humedad" :

"2025-07-26T16:17:54.

"temperatura”:

"timestamp":
"humedad" :

"2025-07-26T16:17:42

"temperatura”:

"timestamp" :
"humedad" :

"2025-07-26T16:17:47

"temperatura”:

"timestal
"humedad" :

"2025-07-26T16:16:23

"temperatura”:

Figura 5-10. Comprobacion de /temp-25-cache

Request URL

Server response
Code Details
20 Response body

{
"humed25": [

"timestamp’
"humedad": 29,
“temperatura”:

"timestamp"
"humedad”: 55,
“temperatura”:

"timestamp"
"humedad”: 55,
“temperatura”:

"timestamp":
"humedad”: 55,
“temperatura”:

En /humed-25-cache obtenemos 25 valores ordenados por humedad decreciente:

http://localhost:3000/huned-25-cache

"2025-07-28708:44:58.5147"
"2025-07-26T15:15:48.8972"
"2025-07-26T15:13:52.3672"

"2025-07-26T15:15:36.7352"

"timestamp": "2025-07-26T15:15:42.8192"
"humedad”: 55,

Figura 5-11. Comprobacion de /humed-25-cache

36

Almacenamiento y optimizacion de series temporales de medidas ambientales mediante TimescaleDB7

1 7™ 1

e En /Nvalores-minuto-cache se obtiene la media y valor maximo por minuto de la temperatura y la
humedad.

Request URL

http://localhost:3000/valores-minuto-cache

Server response

Code Details

Ze Response body
{

"minuto”:

"max_temp
"max_humed" :
{
"minuto”: {
"minutes™:

";vg_temp" 2

"minutes™:
&
"avg_temp":

"max_humed" :
Y,

Figura 5-12. Comprobacion de /valores-minuto-cache

Por otro lado, se muestran imagenes de los endpoints sin caché:

o En /sincache-25 obtenemos los tltimos 25 valores de temperatura y humedad:

Request URL

http://localhost:3808/sincache-25

Server response

Code Details

2y Response body

{
"valores25”: [

"timestamp": "2025-087-28T09:28:
"humedad" : .
"temperatura":

"timestamp": "2025-87-28T09:28:
"humedad" : .
“temperatura”:

"timestamp": "2025-87-28T09:28:
"humedad" : .
"temperatura":

"2025-087-28709:28:

"temperatura":

"timestamp": "2025-07-28T09:28:
"humedad" : .
“temperatura":

Figura 5-13. Comprobacion de /sincache-25

Pruebas y Validaciones

e En /temp-25 obtenemos 25 valores ordenados por temperatura decreciente:
Request URL
Server response

Code Details

=08 Response body

"timestamp": "2025-07-28T08:
"humedad" : .
“temperatura":

"timestamp™: "2025-07-26T16:
“humedad" :

“temperatura":

"timestamp™: "2025-07-28T09:
“humedad" :
“temperatura":

"timestamp™: "2825-87-26T16:
“humedad" :
“temperatura”:

"timestamp™: "2025-07-26T16:
“humedad" :
“temperatura":

Figura 5-14. Comprobacion de /temp-25

o En/humed-25 obtenemos 25 valores ordenados por humedad decreciente:

Request URL

http://localhost:3000/humed-25

Server response

Code Details

2y Response body

“humed25”: [
i

"timestamp": "2025-87-28T08:44:
"humedad" : .
"temperatura":

"timestamp™: "2825-87-26T15:
"humedad" :
"temperatura":

"timestamp™: "2025-07-26T15:
"humedad" : .
"temperatura":

"timesta "2025-07-26T15:
"humedad" :
"temperatura":

"timesta "20825-87-26T15:
“humedad" : .
“temperatura”:

Figura 5-15. Comprobacion de /humed-25

38

Almacenamiento y optimizacion de series temporales de medidas ambientales mediante TimescaleDB9

17 1

e En /valores-minuto-sincache se obtiene la media y valor méximo por minuto de la temperatura y la
humedad:

Request URL

http://localhost:3000/valores-minuto-sincache

Server response

Code Details

Z1L Response body

"minuteo": {},
"avg_temp":
"avg_humed™ :
"max_temp":
"max_humed" :

e
{

"minuto”: {
"minutes':
Tavg_temp®:
"avg_humed™ :
“"max_temp":
“"max_humed™ :
3,
1

"minuto": {
"minutes":

"max_humed" :
e

Figura 5-16. Comprobacion de /valores-minuto-sincache

5.5 Pruebas de la capa de caché

Para validar la funcionalidad y rendimiento de la capa de caché basada en Redis, se realizaron varias pruebas
practicas que demuestran su correcta integracion:

e Verificacion del almacenamiento en caché: Desde una terminal en el sistema host, se ejecuta una
peticion http a un endpoint con caché. Posteriormente, entramos al cliente de Redis y se comprueba si
la clave ha sido almacenada como se muestra en la figura 5-17.
$ sudo docker exec -it redisCache redis-cli

127.0.0.1:6379> keys *
1) "25-valores"

Figura 5-17. Almacenamiento Key en Caché
e Verificacion de la expiracion y regeneracion de la caché:

1) Desde el terminal host accedemos al cliente Redis y verificamos que no hay ninguna clave
porque no hemos hecho la consulta aun como se muestra en la figura 5-18.

$ sudo docker exec -it redisCache redis-cli
127.0.0.1:6379> keys *

(empty array)
127.0.0.1:6379>

Figura 5-18. Prueba caché vacia

40

Pruebas y Validaciones

2) Realizamos la peticion http y comprobamos que la clave se ha almacenado y que su TTL es de
60 segundos, aunque en la figura 5-19 serd menor porque transcurre el tiempo.

27.0.0.1:6379> keys *
) "25-valores”
27.0.0.1:6379> ttl 25-valores

integer) 51
27.0.0.1:6379> |}

Figura 5-19. Comprobacion TTL caché

3) Una vez pasados los 51 segundos de TTL que se ven en la imagen anterior, la caché debe haber
eliminado la clave como se muestra en la figura 5-20 demostrando asi, su capacidad de
expiracion y regeneracion.

127.0.0.1:6379> ttl 25-valores
(integer) 51

127.0.0.1:6379> keys *

(empty array)

127.0.0.1:6379> |}

Figura 5-20. Comprobacion expiracion caché

Verificacion del rendimiento con caché: Para validar 1a mejora en tiempos de respuesta que ofrece el
sistema con caché, se utilizo la herramienta autocannon. Se lanzaron 50 conexiones simultaneas durante

10 segundos contra los endpoints /sincache-50y /concache-50.

El resultado del endpoint sin caché es el que se muestra en la siguiente figura 5-21:

c

S npx autocannon -c 50 -d 10 http://localhost:3000/sincache-50

unning 10s test @ http://localhost:3000/sincache-50
58 connections

Latency 27 ms 30 ms 48 ms 51 ms 32.42 ms 7.34 ms 150 ms

Req/Sec 1090 1090 1563 1658 1518,3 158 1090

Bytes/Sec | 4.26 MB | 4.26 MB | 6.1 MB | 6.47 MB 5.93 MB | 617 kB | 4.25 MB

leq/Bytes counts sampled once per second.
it of samples: 10

15k requests in 10.04s, 59.3 MB read

Figura 5-21. Estadisticas endpoint sin caché

40

Almacenamiento y optimizacion de series temporales de medidas ambientales mediante TimescaleDB1

17 1

El resultado del endpoint con caché es el que se muestra en la siguiente figura 5-22:

7 S npx autocannon -c 50 -d 10 http://localhost:3000/concache-50
Running 10s test @ http://localhost:3000/concache-50
58 connections

Latency 10 ms 11 ms 19 ms 21 ms 12.2

Req/Sec 3389 3389 3899 4311

Bytes/Sec 13.2 MB 13.2 MB 15.2 MB 16.8 MB 15.3 MB | 858 kB

Req/Bytes counts sampled once per second.
of samples: 10

39k requests in 10.84s, 153 MB read

Figura 5-22. Estadisticas endpoint con caché

Por tltimo, en la siguiente tabla se muestra una comparacion de los resultados:

Métrica Sin caché Con caché
Latencia media (Latency) 3242 ms 12.26 ms
Peticiones/Segundo (Reg/Sec) 1.518 pet/seg 3.920 pet/seg
Throughput medio (Avg) 5.93 MB/s 15.3 MB/s
Maxima latencia (Max) 150 ms 81 ms
Peticiones totales 15.000 aprox 39.000 aprox

Tabla 5. Tabla comparativa rendimiento con caché

Los datos confirman que la capa de caché reduce la latencia en mas de un 60% y que ademas casi triplica
la capacidad de servir peticiones por segundo, lo que supone una optimizacion notable del sistema.

Las pruebas realizadas han confirmado el correcto funcionamiento del sistema y su capacidad para
gestionar datos en tiempo real. Los resultados evidencian mejoras significativas en eficiencia gracias al
uso de Redis y Vistas Materializadas. Estos hallazgos validan la solucion planteada y dan pie a la
reflexion global del trabajo en el siguiente apartado de conclusiones.

42

Pruebas y Validaciones

42

Almacenamiento y optimizacion de series temporales de medidas ambientales mediante TimescaleDB3

17 1

6 CONCLUSIONES Y LINEAS FUTURAS

6.1 Cumplimiento de objetivos

El presente Trabajo de Fin de Grado ha cumplido de forma satisfactoria los objetivos establecidos al inicio. Se
ha desarrollado un sistema funcional capaz de adquirir datos de temperatura y humedad desde una placa fisica
Arduino, almacenarlos en una base de datos especializada en series temporales de forma estructurada
(TimescaleDB) y que puedan ser consultados por usuarios mediante una API REST documentada con Swagger.
Esta arquitectura elegida ha permitido que haya una separacion clara de funciones y responsabilidades entre la
capa de adquisicion, la de almacenamiento y la de visualizacion de datos.

Por otra parte, se integr6 un sistema de almacenamiento en caché con Redis para reducir la carga sobre la base
de datos y mejorar el tiempo de respuesta del sistema. Ademas, se ha utilizado Docker para facilitar la gestion
de servicios y permitir que la configuracion sea reproducible, portatil y aislada del entorno host. La incorporacion
del gestor de procesos PM2 ha permitido lanzar y mantener la API en ejecucion de manera estable dentro del
contenedor. Este enfoque en contenedores ha hecho mas sencillo el desarrollo y el despliegue del sistema,
sentando una base solida para su escalabilidad o futuras mejoras.

Este proyecto no solo ha alcanzado los objetivos funcionales propuestos, sino que también ha servido como una
primera aproximacion a la construccion de sistemas basados en microservicios y tecnologias actuales. Aunque
se trata de una solucion enfocada al ambito académico, su disefo facilita que pueda evolucionar hacia
aplicaciones mas complejas.

6.2 Valoracion del trabajo realizado

La realizacion de este proyecto ha supuesto una gran experiencia técnica y personal. Me ha dado la oportunidad
para trabajar con herramientas y tecnologias que no habia utilizado antes y que son muy utilizadas en el ambito
profesional como Node.js, Docker, Redis, TimescaleDB y PM2. Durante el proceso he tenido que estudiar,
comprender y aplicar conceptos clave como la persistencia de datos en contenedores, la comunicacion entre
servicios mediante redes virtuales o la mejora del rendimiento en consultas a base de datos mediante técnicas de
cacheo.

Durante el desarrollo del sistema también se ha prestado atencion a aspectos como la documentacion clara del
sistema y la posibilidad de automatizar su despliegue. Herramientas como Swagger han permitido generar una
interfaz simple y accesible para entender y probar la API, o como autocannon, que ha sido clave para analizar el
comportamiento del sistema bajo carga, permitiendo detectar mejoras en el rendimiento al usar caché.

Por tltimo, desde mi punto de vista este trabajo me ha servido para mejorar en metodologias de resolucion de
problemas, para enfrentarme a errores de integracion y para coger confianza a la hora de empezar proyectos
tecnologicos més complicados desde cero.

6.3 Lineas de mejoray trabajos futuros
Aunque el sistema cumple con los objetivos planteados, existen varias mejoras que permitirian ampliar el
proyecto:

e Visualizacion de datos: Seria util desarrollar un panel o visor web que permitiera consultar
graficamente los valore adquiridos, tendencias y alertas, facilitando su uso a usuarios no técnicos.

e Almacenamiento persistente en Redis: En este proyecto, Redis actiia como caché en memoria volatil.
Se podria implementar su persistencia en disco para conservar los datos en caso de reinicio del

Conclusiones y lineas futuras

contenedor o del sistema.

e Seguridad y autenticacion: Incorporar mecanismos de autenticacion en los endpoints y validacion de
roles de usuario para aumentar la seguridad en caso de que este desplegado en un entorno accesible por
terceros.

e Escalabilidad en la nube: El sistema puede adaptarse para ejecutarse en plataformas cloud, pudiendo
hacer uso de balanceadores de carga y bases de datos distribuidas.

e Alertas y monitorizacion avanzada: Herramientas como Grafana podrian integrarse para visualizar
métricas y generar alertas.

Estas mejoras harian evolucionar al sistema hacia una solucion més completa, mantenible y orientada a entornos
industriales reales.

44

Almacenamiento y optimizacion de series temporales de medidas ambientales mediante TimescaleDB35

1 7™ 1

ANEXO A: CODIGO FUENTE DEL SISTEMA

En el siguiente anexo se detalla el codigo fuente de cada modulo del sistema, dividido y ordenado de la siguiente
manera:

1. Archivos para Docker
Archivo busConnector.js
Archivo index.js

Archivo swagger.js

A

Conjunto de scripts para iniciar o parar el sistema

1.1. Dockerfile
FROM node: 18

Usamos la misma carpeta que en docker-compose
WORKDIR fusr/src/app

y package-lock.json primero

Instalamos dependencias del package.json
RUN npm install

Instalamos pm2 globalmente
RUN npm install -g pm2

Ahora copiamos el resto del prmyectq
COPY

Variables de entorno pasadas como build args
ARG 50QL USER

ARG SOL PASSWORD

ARG S0L PORT

ARG SOL IP

ARG SOL DATABASE

ARG REDIS IP

ARG REDIS PORT

ENV SQL U {SOQL USER} °
SOL_PASSWORD=${SOL_PASSWORD} \
SQL POR SQL PORT} °
SQL_IP=${sSQL_IP} °
SQL DATABASE=${SQL DATABASE} \
REDIS 5 1s IP} \
REDIS PORT=%{REDIS PORT}

Arranca usando pm2-runtime
CMD ["pm2-runtime®, "start",

1.2. compose.yaml

= H

nodejs
always

ANEXO A: Codigo fuente del sistema

##EL contenedor de nodejs depende de que estos

seriesTemporalesDB
redisCache

postgres
postgres

seriesTemporalesDB ##Permite a nodejs conec

5432
seriesTemporalesDB
redisCache
6379
3P00:3000" #Via web accederemos
fdev/tTtyUSBa: /dev/ttyUSBE

Jusr/src/app

.:/usr/src/app #Monta codigo local

fusr/src/app/node modules ;Uid-igi.;'"

seriesTemporalesDB
timescale/timescaledb-ha:pgl4d-latest
always

5432:5432
postgres

postgres
seriesTemporalesDB

pgdata:/home/postgres/pgdata/data # Persistencia de datos

redisCache
redis:latest
always

Almacenamiento y optimizacion de series temporales de medidas ambientales mediante TimescaleDB7

1 7™ 1

1.3. ecosystem.config.js

name
script: "i
instances: 1,
autorestart

watch

max memory restart

name
script

instances

autorestart

watch

max memory restart: "300M

k Datos de la base de datos PostgreSqL
SQL USER=postgres

SQL DATABASE=seriesTemporalesDB

Datos de Redis
REDIS IP=127.9.8
REDIS PORT=637

48 ANEXO A: Codigo fuente del sistema

2. busConnector.js

//ARCHIVO bt ector.]s

v.50QL PORT,

let humedad =
port

1)

('data
=t value

(value)) {
(Dato no

e: ${value});

48

Almacenamiento y optimizacion de series temporales de medidas ambientales mediante TimescaleDB9

1 7™ 1

recibida: ${humedad}%);

= value;
(" Temperatura recibida: ${temp}2C’);

base de datos

cemperatura: temp,
humedad: humedad

('Datos insertados corre };
(err) {

(*Error insertando en base de datos:’, err.message);

humedad =
}
});

3. index.js

swaggerli.serve, swaggerUi (swaggerspec));

// instancia
const bbdd
{

client: 'pg
connection

{
USER,

password: process.env.SQL PASSWORD,

host: process.eny IP,
port: process.eni PORT,
database: process.env.S0L DATABASE

Creo instancia redis que

nst redis = createClient

socket: {

REDIS PORT,
REDIS IP,

t(*/concache-50",

st valorCache = await redis.

if(valorCache) //Si la anterior linea devolvio algo

{
}

response. ({valores50: JSON.

s s
Il ta

nst valores50 = awail
alt redis. 50-valores',

response. ({valoress560});

});

ANEXO A: Codigo fuente del sistema

Almacenamiento y optimizacion de series temporales de medidas ambientales mediante TimescaleDB1

1 7™ 1

('/concache-25', async({request, response) => {
onst valorCache = await redis ('25-valores');

if(valorCache) //51 la anterior linea devolvio algo, respondere

{
}

return response ({valores25: JSON (valorCache)});

//Consulta a bbdd. A la tabla medidas sensor, que venga ordenada ¢

nst valores25 = await medldas r I: timestamp',

awalt redis ('25-valores', 60, JSON (valores2s));

response ({valores2s5});

1)

async(request, response}
onst valorCache = await redis ('50-temp');
if(valorCache} //5i la anterior linea devolvio algo,

response ({temp58: JSON (valorCache)}):

A la tabla medidas sensor, gue venga ordenada

peratura’,

//Consulta a bbdd

const temp5@ ;“;;3;1 ('medidas ‘E ié"
await redis ('s58-temp’, 150N (temps@));

response ({temp50});
Ll

ANEXO A: Codigo fuente del sistema

, async{request, response} => {
onst valorCache = await redis ("25-temp');

if{valorCache) //5i la anterior linea devolvio algo, responderé

{
}

return response 150N (valorCache)}):

ndiente
(25);

//Consulta a bbdd. A la tabla medidas sensor, que venga ordenada de manera desce

onst temp25 = await medidas sensor (*temperatura’, 'desc’) .
await redis ('25-temp', JSON (temp25));

response ({temp25});

('/humed-58-cache’, async(reguest, response) == {
onst valorCache = await redis ('58-humed’);

if(valorCache) //5i la anterior linea devolvio algo, responderé

{
}

return response ({humed58: JSON (valorcache}});
//Consulta a bbdd. A la tabla medidas sensor, que venga ordenada ¢
const humedse awalt ('medidas sensor’) ("humedad
await redis ('50-humed', 66, JSON (humeds8)) ;

response ({humeds6}) ;

1)

Almacenamiento y optimizacion de series temporales de medidas ambientales mediante TimescaleDB3

1 7™ 1

st valorCache
if(valorCache)

response. ({humed25: JSON. (valorCache)});

st humed25 await medidas sensor ("humedad

ait redis. ('25-humed', 60, JSON. fy(humed25)) ;

response. ({humed25}) ;

})

app ('/valores-minuto-cache’, async (request, response) =>
15t valorCache = await redi ('valor-min'});
if(valorCache) Si la anterior 1

{

return response ({medymax

ANEXO A: Codigo fuente del sistema

onst medymax = await bbdd
WITH por minuto AS (
avg temp AS mp, avg humed AS humed, max temp, max humed

Europe/Berlin' > date trunc('month', now())

extract (MINUTE FROM tim
temp,
humed,
max_temp,
max_humed
r_minuto

rox percentile(®.50, percentile agg(temp)) AS avg temp,
X percentile(0.50, percentile agg(humed)) AS avg humed,
(max_temp) AS max temp,
max(max humed) AS max humed

(medymax)) ;

response. (200) (medymax)

{'/sincache-58', async{request, response}

//Consulta a bbdd. A

nst valores5@ = await

response ({valores58});

Almacenamiento y optimizacion de series temporales de medidas ambientales mediante TimescaleDB35

17 N

async(request, response)

nst valores2s

response ({valores2s});

//Consulta a bbdd
const temp50 = awai

response ({temp50});

async{reguest, response} =>

//Consulta a bbdd. A 1la tabla medidas
const temp25 = await ('

response ({temp25});

(*temperatura’,

('temperatura’,

ANEXO A: Codigo fuente del sistema

fConsulta a bbdd. A la tabla medidas sensor, que venga ordenada de manera descend

const humed50 = await nedidas ('humedad', 'desc') fSﬁ]._

response ({humeds0});

(" /humed-25', async{reguest, response) == {

//Consulta a bbdd

const humed25 Awalt

response ({humed25}) ;

nc (reguest, response) ==

Almacenamiento y optimizacion de series temporales de medidas ambientales mediante TimescaleDB7

1 7™ 1

const medymax = await bbdd (
WITH por minuto AS (
SELECT time, avg temp, avg humed, max temp, max humed
FROM temp y humed porMin
WHERE "time" AT TIME ZONE 'Europe/Berlin' = date trunc('month', time)
ORDER BY 1
),
data minuto AS |

SELEL

xtract (MINUTE FROM time) * interval 'l minute' AS minuto,

avg humed,
max temp,
max humed

| por minuto

« percentile(@.50, percentile agg(avg temp)) AS avg temp,
¥ percentile(0.50, percentile agg(avg humed)) AS avg humed,
ax temp) AS max temp,

ax_humed) AS max

response. (200). (medymax) ;

});

3000)

58 ANEXO A: Codigo fuente del sistema

4. Swagger.js

5. Scripts

5.1.vistasMaterializadas.sh

58

Almacenamiento y optimizacion de series temporales de medidas ambientales mediante TimescaleDB9

1 7™ 1

U postgres -d seriesTemporalesDB
start offset = NULL,
end offset == INTERVAL 'l minute

schedule interval => INTERVAL 'l minute

y humed porDia en la base de datos

TemporalesDB psgl -U postgres

d seriesTemporalesDB
/ humed porDia

bucket ('l day', medidas sensor.timestamp, 'Europe/Berlin') AS time,
x percentile(0.58, percentile a temperatura)) AS avg temp,
rox _percentile(®.58, percentile agg(humedad)) AS avg humed,
temperatura) AS max temp,
ax (humedad) AS max humed
FROM medidas sensor
GROUP BY

ta materia temperatura/humedad por

SELEC

exec -1 seriesTemporalesDE psql
(T add continuous agg /
temp wmed porDia’,

U postgres -d seriesTemporalesDB

end offset => INTERVA .
schedule interval == INTERVAL 'l

rrectamente.

seriesTemporalesDB. ..

Yy numed

psql -U postgres -d seriesTemporalesDB
W IF NOT EXISTS temp y humed porHora

imescaledb.continuous) AS

bucket('1l hour pe/Berlin®) AS time,
r percentile(@.50, percenti (temperatura)) AS
percentile(@.58, percentile agg(humedad)) AS avg humed,
temperatura) AS max temp,
ax(humedad) AS max humed
FROM medidas sensor
GROUP BY 1;

porHora en la base de datos seriesTemporalesDE...

ANEXO A: Codigo fuente del sistema

lizada de temperatura/humedad por ra CI da correctamente.

exec -1 seriesTemporalesDB psql
T add continuous aggregate policy(
y_humed porHora',
start offset == NULL,
end offset == INTERVAL 'l hour
schedule interval == INTERVAL '1 hour

exec -1 seriesTemporalesDB psqgl -U postgres -d seriesTemporalesDB
WITH datos hoy AS |

']

FROM medidas sensor
WHERE timestamp::date = nowl()::date

vg(humedad) AS avg humed,
(temperatura) AS max temp,
max (humedad) AS max humed
FROM datos hoy
GROUP BY 1
| .
max¥ temp hora AS |
SELECT DISTINCT ON (EXTRACT(HOUR FROM timestamp))
EXTRACT(HOUR FROM timestamp) AS hora,
timestamp AS time max temp
FROM datos hoy
ORDER BY EXTRACT(HOUR FROM timestamp), temperatura DESC

a¥ humed hora AS |
ECT DISTINCT ON (EXTRACT(HOUR FROM timestamp))
EXTRACT(HOUR FROM timestamp) AS hora,
timestamp AS time max humed
FROM datos hoy
ORDER BY EXTRACT(HOUR FROM timestamp), humedad DESC

Almacenamiento y optimizacion de series temporales de medidas ambientales mediante TimescaleDB1

1 7™ 1

nora As |
ECT DISTINCT ON (EXTRACT(HOUR FROM timestamp))
EXTRACT (HOUR FROM timestamp) AS hora,
timestamp AS time max humed
FROM datos hoy
ORDER BY EXTRACT(HOUR FROM timestamp), humedad DESC

g temp,
.avg_humed,
.max temp,
mth.time max temp,
a.max humed,
mhh.time max humed
FROM agrupado a
LEFT JOIN max temp hora mth ON a.hora =
LEFT JOIN max humed hora mhh ON a.hor
ORDER BY a.hora;

dias la temperatura/humedad media y el

ralesDB psgl -U postgres

y humed porDia
Europe/Berlin' > date trunc('month', now()) - interval 'l year

char(time, 'Dy"') AS dia,
percentile(®.58, percentile agg(temp)) AS avg temp,
percentile(®.58, percentile agg(humed)) AS avg
max temp,
max (max hum :
FROM datos
GROUP BY 1

x_temp,
ax_humed

y[*Sun','Mon','Tue', 'Wed', 'Thu','Fri', Sat']) WITH ORDINALITY AS d(dia, ordi
LEFT JOIN estadisticas e ON lower(e.dia) = lower(d.dia);

62

ANEXO A:

Codigo fuente del sistema

5.2.run.sh

62

Almacenamiento y optimizacion de series temporales de medidas ambientales mediante TimescaleDIg3

1 7™ 1

ANEXO B: INSTRUCCIONES Y COMANDOS

En el siguiente anexo se adjunta una captura con instrucciones para arrancar el proyecto de 0 y posteriormente
una serie de comandos de utilidad.

1. Instrucciones

para arrancar de @ el pro

ialport knex

forzar

build --no-cache ara uir la g cer cache (recomendada)

up -d

ercompose.
up -d -nombreContenedor

nta todos los contenedo

TemporalesDB

Ver 1 5 -
SELECT * FROM medi r LIMIT

Borrar la tabla
DROP TABLE IF EXISTS me

e sin entrar al cliente psgl:
mporalesDB psql -U pos & esTemporalesDB -c
mporalesDB psql -U postgres esTemporalesDB -c "SELECT * FROM medil sor LIMIT 10;"

-U postgres 5 sTemporalesDB -c "SELECT * FROM medi sor ORDER BY timestamp DESC LIMIT 18;"

ANEXO B: Instrucciones y comandos

Pasos para comprobar que el dispositive arduino esta funcionando

64

Almacenamiento y optimizacion de series temporales de medidas ambientales mediante TimescaleDB5

17 1

REFERENCIAS

[1] E.S. Cardoso, «Github,» [En linea]. Available: https://github.com/enriqueesanchz/redis-cache.

[2] Acer, «Acer Store,» [En linea]. Available: https://store.acer.com/es-es/acer-travelmate-p2-portatil-
tmp215-53-negro-nx-vgbeb-00g?srsltid=AfmBOo0J6zADz10ex1AauJ 15GrU7L-
xdMCJpHzs2ApBGu_Nza-7vRY Sw.

[3] AZ-Delivery, «AZ-Delivery,» [En linea]. Available: https://www.az-
delivery.de/es/products/mikrocontroller-board.

[4] Mkelectronica, «Mkelectronica,» [En linea]. Available: https://mkelectronica.com/producto/sensor-
temperatura-humedad/.

[5] Arduino, «Arduino,» [En linea]. Available: https://docs.arduino.cc/.

[6] JavaScript, [En lineal]. Available:
https://developer.mozilla.org/es/docs/Learn web development/Core/Scripting/What is _JavaScript.

[7] Node.js, [En linea]. Available: https://nodejs.org/es/about.

[8] Redis, «Redis,» [En linea]. Available: https://redis.io/docs/latest/.

[9] Docker, «Docker,» [En linea]. Available: https://docs.docker.com/get-started/.

[10] Visual Studio Code, «Visual Studio Code,» [En linea]. Available: https://code.visualstudio.com/docs.

[11] RedHat, «Redhat,» [En linea]. Available: https://www.redhat.com/es/topics/internet-of-things/what-i
iot.

[12] Karpagan Institute of Technology, «Karpagamtech,» [En linea]. Available: https://karpagamtech-ac-
in.translate.goog/iot-evolution-future-
impact/? x tr sl=en& x tr tl=es& x tr hl=es& x tr pto=rqg#:~:text=By%20the%202000s%2C%20I

0T%?20evolution,manage%20objects%620in%20real%20time..

[13] Q. Jones, «DIGL» [En linea]. Available: https:/es.digi.com/blog/post/iot-based-environmenta
monitoring.

[14] Alpha Telecom Solutions, «alphaenginyeria,» [En linea]. Available: https://alphaenginyeria.com/capas-
arquitectura-iot.

[15] Universidad de Valladolid, «UVA» [En linea]. Available:
https://wwwS5.uva.es/estadmed/datos/series/series.htm.

[16] MathWorks, «mathworks,» [En linea]. Available: https:/la.mathworks.com/discovery/time-series-
analysis.html.

[17]IONOS, «ionos,» [En linea]. Awvailable: https:/www.ionos.es/digitalguide/hosting/cuestiones-

66 Referencias

tecnicas/que-es-influxdb/.
[18] OpenTSDB, «opentsdb,» [En linea]. Available: https://opentsdb.net/docs/build/html/index.html.

[19] influxdata, «influxdata,» [En linea]. Available: https://www.influxdata.com/comparison/mongodb-vs-
tsdb/#:~:text=from%20various%20sources.-
,J0T%20Data%?20Storage,real%2Dtime%20insights%20and%20analytics..

[20] Graphite, «graphite,» [En linea]. Available: https://graphite.readthedocs.io/en/latest/.

[21] QuestdDB, «github,» [En linea]. Available: https://github.com/questdb/questdb.

[22] Prometheus, «prometheus,» [En linea]. Available: https://prometheus.io/docs/introduction/overview/.
[23] IBM, «ibm,» [En linea]. Available: https://www.ibm.com/es-es/topics/postgresql.

[24] Postgresql, «postgresql,» [En linea]. Available: https://www.postgresql.org/about/.

[25] PostgreSQL, «postgresql,» [En linea]. Available: https://www.postgresql.org/docs/current/populate.html.
[26] PostgreSQL, «postgresql,» [En linea]. Available: https://www.postgresql.org/docs/13/release-13.html.

[27] Timescale, «timescale,» [En linea]. Available: https://docs.timescale.com/use-
timescale/latest/hypertables/.

[28] A. Valialkin, «valyala medium,» [En linea]. Available: https://valyala.medium.com/high-cardinality-tsdb-
benchmarks-victoriametrics-vs-timescaledb-vs-influxdb-13e6ee64dd6b.

[29] Y. Hwang, «questdb,» [En linea]. Available: https://questdb.com/blog/comparing-influxdb-timescaledb-
questdb-time-series-databases/.

[30] M. Freedman, «Medium,» [En linea]. Available: https://medium.com/timescale/timescaledb-vs-influxdb-
for-time-series-data-timescale-influx-sql-nosql-36489299877.

[31]J. Blackwood Sewell, «<DEV,» [En linea]. Available: https://dev.to/timescale/timescaledb-in-2024-
making-postgres-faster-32£7.

[32] Amazon, «<AWS,» [En linea]. Available: https://aws.amazon.com/es/memcached/.

[33] ManageEngine, «site24x7,» [En linea]. Available: https://www.site24x7.com/learn/memcached-vs-redis-
comparison.html.

[34] Amazon, «<AWS,» [En linea]. Available: https://aws.amazon.com/es/elasticache/what-is-redis/. [Ultimo
acceso: 05 Junio 2025].

[35] Ignite Apache, «ignite apache,» [En linea]. Available: https:/ignite.apache.org/.
[36] Couchbase, «couchbase,» [En linea]. Available: https://www.couchbase.com/es/.

[37] Redis, «redis,» [En linea]. Available: https://redis.io/es/redis-enterprise/estructuras-de-datos/.

66

Almacenamiento y optimizacion de series temporales de medidas ambientales mediante TimescaleD7

17 1

[38] ElWillie, «elwillie,» [En linea]. Available: https://elwillie.es/2022/10/17/redis-persistencia-y-durabilidad/.

[39] P. Khandelwal. [En linea]. Available: https://medium.com/@khandelwal.praful/understanding-redis-
high-availability-cluster-vs-sentinel-420ecaac3236.

[40] R. Contreras, «computing,» [En linea]. Available: https://www.computing.es/informes/contenedores-
software-que-son-ventajas-aplicacion/.

[41] Docker, [En linea]. Available: https://docs.docker.com/engine/network/.
[42] A. Fernandez. [En linea]. Available: https://anderfernandez.com/blog/tutorial-docker-compose/.
[43] Autor, «Este es el ejemplo de una cita,» Tesis Doctoral, vol. 2,1n° 13,2012.

[44] O. Autor, «Otra cita distinta,» revista, p. 12, 2001.

