

Equation Chapter 1 Section 1

Trabajo Fin de Grado

Grado en Ingeniería de las Tecnologías de

Telecomunicación

Almacenamiento y optimización de series temporales

de medidas ambientales mediante TimescaleDB y

caché Redis

Autor: Amando Antoñano Puerta

Tutor: Antonio Jesús Sierra Collado

Dpto. Ingeniería Telemática

Escuela Técnica Superior de Ingeniería

Universidad de Sevilla

 Sevilla, 2025

iii

Trabajo Fin de Grado

en Ingeniería de las Tecnologías de Telecomunicación

Almacenamiento y optimización de series

temporales de medidas ambientales mediante

TimescaleDB y caché Redis.

Autor:

Amando Antoñano Puerta

Tutor:

Antonio Jesús Sierra Collado

Dpto. Ingeniería Telemática

Escuela Técnica Superior de Ingeniería

Universidad de Sevilla

Sevilla, 2025

v

Trabajo Fin de Grado: Almacenamiento y optimización de series temporales de medidas ambientales mediante

TimescaleDB y caché Redis.

Autor: Amando Antoñano Puerta

Tutor: Antonio Jesús Sierra Collado

El tribunal nombrado para juzgar el Proyecto arriba indicado, compuesto por los siguientes miembros:

Presidente:

Vocales:

Secretario:

Acuerdan otorgarle la calificación de:

Sevilla, 2025

El secretario del Tribunal

vii

A mi familia y a mis amigos por

su apoyo y paciencia sin límites.

ix

Agradecimientos

Quiero expresar mi más sincero agradecimiento a todas las personas que me han acompañado y apoyado a lo

largo de esta etapa universitaria.

En primer lugar, gracias a mi familia por su apoyo incondicional, por confiar en mí y apoyarme incluso en los

momentos donde ya no tenía ánimos. Sin vuestro ánimo, este camino hubiera sido más empinado y con más

obstáculos.

A mi tutor, Antonio Jesús Sierra Collado, por su orientación, paciencia y compromiso durante todo el proceso.

Su experiencia y su guía han sido fundamentales para poder realizar este trabajo.

También quiero agradecer a mis amigos fuera y dentro de la carrera, no solo por darme animo cuando veía todo

negro o compartir apuntes, sino también por todos los buenos momentos.

Finalmente, a todas aquellas personas que, de una manera u otra, han contribuido a mi formación y crecimiento

durante estos años. Gracias por formar parte de este proceso.

Amando Antoñano Puerta

Sevilla, 2025

xi

Resumen

En la actualidad, el tratamiento eficiente de grandes volúmenes de datos en tiempo real se ha convertido en un

desafío clave dentro del ámbito tecnológico, especialmente en el contexto del Internet de las Cosas (IoT). La

monitorización ambiental, y en particular el control de variables como la temperatura y la humedad es una de

las áreas que más se ha beneficiado de este avance, permitiendo el desarrollo de soluciones inteligentes para

distintos entornos.

En este contexto, el presente Trabajo de Fin de Grado se centra en el diseño e implementación de un sistema de

obtención y almacenamiento de medidas de temperatura y humedad, haciendo uso de tecnologías especializadas

en el tratamiento de series temporales y almacenamiento en caché. Para la toma de datos se emplea una placa

Arduino conectada a un sensor DHT11, encargado de capturar periódicamente las lecturas del entorno. Estos

datos se envían a una base de datos TimescaleDB, una extensión de PostgreSQL optimizada para el

almacenamiento y consulta eficiente de series temporales.

Con el fin de mejorar el rendimiento del sistema en las consultas más recurrentes, se ha incorporado Redis como

sistema de caché, permitiendo reducir el tiempo de respuesta y la carga sobre la base de datos. Gracias a esta

arquitectura, el sistema logra ofrecer una solución eficaz para la recopilación, almacenamiento, y visualización

de datos ambientales en tiempo real.

En este trabajo se ha desarrollado un sistema funcional capaz de recopilar, almacenar y consultar datos

ambientales en tiempo real mediante el uso combinado de Arduino, TimescaleDB y Redis. Los resultados

obtenidos muestran una mejora notable en la eficiencia y en los tiempos de respuesta, lo que valida la idoneidad

de la arquitectura propuesta para escenarios IoT.

xiii

Abstract

Nowadays, the efficient processing of large volumes of real-time data has become a key challenge in the field

of technology, particularly within the context of the Internet of Things (IoT). Environmental monitoring, and

specifically the control of variables such as temperature and humidity, is one of the areas that has greatly

benefited from these advancements, enabling the development of intelligent solutions for various environments.

In this context, the present Final Degree Project focuses on the design and implementation of a system for

acquiring and managing temperature and humidity measurements, using technologies specialized in time-series

data handling and caching. An Arduino board connected to a DHT sensor is used to periodically capture

environmental readings. These measurements are then sent to a TimescaleDB database, a PostgreSQL extension

optimized for the efficient storage and querying of time-series data.

To enhance system performance in frequent queries, Redis has been incorporated as a caching layer, reducing

response times and easing the load on the main database. With this architecture, the system provides an effective

solution for collecting, storing, and visualizing environmental data in real time.

The main objective of this project is to demonstrate how the integration of technologies such as Arduino,

TimescaleDB, and Redis can lead to scalable and efficient systems for data management in IoT scenarios, laying

the groundwork for future applications in fields such as smart homes, industrial monitoring, or precision

agriculture.

Índice

Agradecimientos ix

Resumen xi

Abstract xiii

Índice xiv

Índice de Tablas xvi

Índice de Figuras xviii

Notación xxi

1 Introducción 1
1.1 Motivación 1
1.2 Objetivos 1
1.3 Antecedentes 2
1.4 Descripción de la solución 2

1.4.1 Objetivos Específicos 2
1.4.2 Funcionalidades Principales 3
1.4.3 Esquema de la Arquitectura 3

1.5 Estructura de la memoria 4

2 Recursos Utilizados 8
2.1 Recursos Hardware 8

2.1.1 Portátil 8
2.1.2 Placa Arduino 9
2.1.3 Sensor DHT11 9

2.2 Recursos Software 10
2.2.1 Arduino IDE 10
2.2.2 JavaScript 10
2.2.3 Node.js 11
2.2.4 Redis 11
2.2.5 Ubuntu 11
2.2.6 Windows 10 PRO 12
2.2.7 TimescaleDB 12
2.2.8 Docker 12
2.2.9 Mozilla Firefox 13
2.2.10 Visual Studio Code 13

3 Estado del Arte 11
3.1 Contextualización: IoT y Monitorización ambiental 11

3.1.1 Definición y evolución del Internet de las Cosas (IoT) 11
3.1.2 Importancia de la monitorización ambiental en IoT 11
3.1.3 Arquitecturas de sistemas IoT para monitorización ambiental 12

3.2 Datos Temporales 12
3.2.1 Definición de series temporales 12
3.2.2 Componentes fundamentales de los datos de series temporales 12

xv

3.2.3 Retos en la gestión de series temporales 12
3.3 Plataformas para Series Temporales: Enfoque en TimescaleDB 13

3.3.1 Bases de datos especializadas en series temporales 13
3.3.2 Bases de datos relacionales con extensiones para series temporales 14

3.4 Sistemas de Caché en entornos IoT: Enfoque en Redis. 17
3.4.1 Rol de la Memoria Caché 17
3.4.2 Comparativa general de soluciones de Sistemas Caché 18
3.4.3 Arquitectura de Redis y características relevantes 19
3.4.4 Uso de Redis como capa caché en monitorización ambiental. 21

3.5 Contenerización y Despliegue: Enfoque en Docker 21
3.5.1 Concepto de contenedor y diferencias con máquinas virtuales 21
3.5.2 Docker en arquitecturas IoT 22
3.5.3 Docker Compose para orquestación local 22
3.5.4 Beneficios y limitaciones de Docker en IoT 24

4 Desarrollo del proyecto 26
4.1 Arquitectura General del Sistema 26
4.2 Adquisición y tratamiento de datos 27
4.3 Base de datos de series temporales 28
4.4 Implementación de la capa caché con Redis 28
4.5 Visualización de datos mediante API REST 28
4.6 Contenerización y despliegue 29

5 Pruebas y Validaciones 32
5.1 Entorno de pruebas 32
5.2 Pruebas de adquisición de datos 32
5.3 Pruebas de almacenamiento y vistas materializadas 33
5.4 Pruebas de la API REST 35
5.5 Pruebas de la capa de caché 39

6 Conclusiones y líneas futuras 43
6.1 Cumplimiento de objetivos 43
6.2 Valoración del trabajo realizado 43
6.3 Líneas de mejora y trabajos futuros 43

ANEXO A: Código fuente del sistema 45

ANEXO B: Instrucciones y comandos 63

Referencias 65

ÍNDICE DE TABLAS

Tabla 1. Aspectos busConnector.js 27

Tabla 2. Vistas Materializadas 28

Tabla 3. Servicios en Docker-Compose 30

Tabla 4. Entorno de pruebas 32

Tabla 5. Tabla comparativa rendimiento con caché 41

xvii

ÍNDICE DE FIGURAS

Figura 1-1. Arquitectura 4

Figura 2-1. Portátil Acer TravelMate TMP215-53. 8

Figura 2-2. Placa Arduino AZ-Delivery UNO. 9

Figura 2-3. Sensor DHT11 9

Figura 2-4. Arduino 10

Figura 2-5. JavaScript 10

Figura 2-6. Node.js 11

Figura 2-7. Redis 11

Figura 2-8. Ubuntu 11

Figura 2-9. Windows 10 PRO 12

Figura 2-10. TimescaleDB 12

Figura 2-11. Docker 12

Figura 2-12. Mozilla Firefox 13

Figura 2-13. Visual Studio Code 13

Figura 3-1. Definición de una Hypertable. 15

Figura 3-2.Crear Índice. 15

Figura 3-3.Compresión datos. 15

Figura 3-4.Creación de Vista Materializada. 16

Figura 3-5.Creación de política de eliminación. 16

Figura 3-6. Ejemplo Filtrado por time. 17

Figura 3-7. Ejemplo de Agregación continua. 17

Figura 3-8. Redis Master-Slave. 20

Figura 3-9. Redis Sentinel. 20

Figura 3-10. Redis Cluster. 21

Figura 3-11. Docker Compose-Version. 22

Figura 3-12.Docker Compose-Services. 23

Figura 3-13.Docker Compose-Volumes. 23

Figura 3-14.Docker Compose-Networks. 23

Figura 3-15. Docker Compose-Environment. 23

Figura 3-16. Docker Compose-Depends_on 24

Figura 4-1. Arquitectura General del sistema 26

Figura 4-2. Adquisición y Tratamiento de datos 27

Figura 4-3. Interfaz Swagger UI 1 29

Figura 4-4. Interfaz Swagger UI 2 29

xix

Figura 4-5. Interfaz Swagger UI 3 29

Figura 5-1. Contenedores Entorno Pruebas 32

Figura 5-2. Comprobación de datos 33

Figura 5-3. Valores de la tabla medidas_sensor 33

Figura 5-4. Estructura tabla medidas_sensor 34

Figura 5-5. Hypertable medidas_sensor 34

Figura 5-6. Vistas materializadas 34

Figura 5-7. Consulta datos a vista materializada 34

Figura 5-8. Actualización de Vistas Materializadas. 35

Figura 5-9. Comprobación de /concache-25 35

Figura 5-10. Comprobación de /temp-25-cache 36

Figura 5-11. Comprobación de /humed-25-cache 36

Figura 5-12. Comprobación de /valores-minuto-cache 37

Figura 5-13. Comprobación de /sincache-25 37

Figura 5-14. Comprobación de /temp-25 38

Figura 5-15. Comprobación de /humed-25 38

Figura 5-16. Comprobación de /valores-minuto-sincache 39

Figura 5-17. Almacenamiento Key en Caché 39

Figura 5-18. Prueba caché vacía 39

Figura 5-19. Comprobación TTL caché 40

Figura 5-20. Comprobación expiración caché 40

Figura 5-21. Estadísticas endpoint sin caché 40

Figura 5-22. Estadísticas endpoint con caché 41

xxi

Notación

RAM Memoria de Acceso Aleatorio

SSD Unidad de Estado Sólido

CPU Unidad Central de Procesamiento

TB Terabyte

IDE Entorno de Desarrollo Integrado

IOT Internet de las Cosas

RFID Identificación por Radiofrecuencia

SQL Lenguaje de Consulta Estructurado

RLE Codificación por Longitud de Ejecución

TTL Tiempo de Vida

REDIS Servidor de Diccionario Remoto

Almacenamiento y optimizacio n de series temporales de medidas ambientales mediante TimescaleDB y cache Redis.

1

1 INTRODUCCIÓN

1.1 Motivación

En los últimos años, el crecimiento del internet de las cosas (IoT) ha impulsado el desarrollo de sistemas capaces

de recopilar, procesar y analizar grandes volúmenes de datos en tiempo real. Esta tendencia ha despertado un

creciente interés personal y académico por explorar soluciones que permitan una gestión eficiente de datos

provenientes del entorno, especialmente aquellos relacionados con condiciones ambientales como la

temperatura y humedad. Por esta razón, surgió la motivación por diseñar un sistema que integrara hardware de

bajo coste con tecnologías de almacenamiento y consultas avanzadas, capaces de responder de forma ágil a las

demandas de datos temporales.

El uso de una placa Arduino junto a un sensor de temperatura y humedad permite simular un escenario realista

y accesible de adquisición de datos, ideal para proyectos de monitorización ambiental en hogares, invernaderos,

laboratorios o entornos industriales. Por otro lado, el almacenamiento eficiente de series temporales representa

un reto técnico que va más allá del simple registro de datos. La elección de TimescaleDB como base de datos

no fue casual ya que su arquitectura está especialmente diseñada para trabajar con grandes volúmenes de datos

distribuidos en el tiempo, ofreciendo consultas potentes y herramientas de agregación avanzadas.

Finalmente, la incorporación de Redis como sistema caché responde a la necesidad de optimizar el rendimiento

del sistema en escenarios donde la latencia y la rapidez de acceso a la información son factores críticos. Poder

combinar estas tecnologías en un mismo proyecto no solo ha supuesto un desafío técnico interesante, sino

también una oportunidad para aprender a construir sistemas modernos y escalables que pueden ser aplicados a

casos reales dentro del ámbito del IoT.

1.2 Objetivos

En esta sección, se enumeran los objetivos que se han marcado para el desarrollo del proyecto:

• Diseñar e implementar un sistema de adquisición de datos ambientales mediante una placa Arduino y

un sensor DHT11 para medir temperatura y humedad de forma continua.

• Realizar un estudio sobre las tecnologías de PostgreSQL con la extensión de TimescaleDB, Docker y

Redis para comprender sus características y cuáles podrían ser sus requisitos de integración.

• Utilizar Docker para contener la base de datos, el script JavaScript de inserción de datos y Redis para

facilitar su despliegue, gestión, comunicación e integración.

La ciencia puede divertirnos, pero es la ingeniería la

que cambia el mundo.

- Isaac Asimov -

 Introducción

2

1.3 Antecedentes

Este trabajo es una extensión del trabajo realizado por Enrique Sánchez Cardoso “Base de datos para Series

Temporales y caché” [1], bajo la tutela de Antonio Jesús Sierra Collado. Ambos proyectos se centran en

demostrar la eficacia de las tecnologías de gestión de datos para entornos de alto rendimiento, haciendo uso de

TimescaleDB y Redis para optimizar el almacenamiento y la consulta de grandes volúmenes de información.

El proyecto parte de esa base teórica y técnica, y añade una capa práctica de adquisición de datos reales mediante

hardware físico, concretamente una placa Arduino conectada a un sensor DHT11. Esta diferencia fundamental

introduce una dimensión IoT al sistema, conectando el mundo físico con el entorno digital a través de sensores,

haciendo que la generación de datos no sea artificial, sino proveniente de condiciones ambientales reales y en

tiempo real. Esta innovación permite no solo la monitorización en entornos controlados, sino también el análisis

de datos ambientales reales, ampliando así el abanico de aplicaciones potenciales del sistema.

Considerando los avances alcanzados en el campo de la monitorización y gestión de datos, este proyecto se

propone complementar y ampliar las investigaciones previas mediante el uso de tecnologías actuales,

optimizando la eficiencia en la captura, almacenamiento y consulta de datos en tiempo real.

1.4 Descripción de la solución

En este apartado se presenta una descripción detallada de la solución desarrollada en este proyecto. La solución

tiene como objetivo principal proporcionar una arquitectura funcional para la adquisición, almacenamiento,

procesamiento y consulta eficiente de datos ambientales (temperatura y humedad) en tiempo real, haciendo uso

de tecnologías como Arduino, TimescaleDB y Redis. Esta solución integra componentes de hardware y software

mediante una arquitectura modular, escalable y orientada a escenarios del Internet de las Cosas.

A lo largo de este apartado, se describen los componentes principales de la solución, así como su interconexión,

flujos de datos y funcionalidades clave.

1.4.1 Objetivos Específicos

Los objetivos específicos de este Proyecto son los siguientes:

• Captura de datos físicos en tiempo real:

Se utiliza una placa Arduino conectada a un sensor DHT11 para la adquisición periódica de datos de

temperatura y humedad del entorno. Estas mediciones se obtienen a intervalos definidos mediante un

sketch1 en Arduino.

• Procesamiento y envío de datos al backend:

Un script en JavaScript, ejecutado en un equipo local, se encarga de leer los datos transmitidos por el

Arduino (vía puerto serie) y formatearlos adecuadamente para su inserción en la base de datos.

• Persistencia temporal optimizada con TimescaleDB:

Almacenar los datos en una base de datos TimescaleDB, una extensión de PostgresSQL

específicamente diseñada para el manejo de series temporales, que permite consultas complejas y

eficientes sobre datos distribuidos en el tiempo incluyendo operaciones de agregación, filtrado por

intervalo y ordenamiento cronológico.

• Mejora del rendimiento mediante caché:

Implementar Redis como sistema de caché para reducir la carga sobre la base de datos y acelerar las

respuestas a las consultas más frecuentes lo que reduce la latencia de respuesta.

1 Forma de referirse a los programas que se cargan y ejecutan en la placa Arduino.

3

3 Almacenamiento y optimización de series temporales de medidas ambientales mediante TimescaleDB

y caché Redis.

 • Contenerización del sistema:

Todos los componentes del sistema se ejecutan en contenedores Docker independientes, conectados a

través de una red virtual Docker común.

1.4.2 Funcionalidades Principales

Las principales funcionalidades de este proyecto son las siguientes:

• Adquisición de datos en tiempo real:

El sensor DHT11 envía datos cada cierto intervalo de tiempo mediante la placa Arduino, los cuales son

procesados por un script que los inserta en la base de datos.

• Almacenamiento de series temporales:

Cada dato de temperatura y humedad se registra en TimescaleDB con su correspondiente timestamp2,

permitiendo el seguimiento histórico y análisis temporal.

• Consultas optimizadas mediante Redis:

Al realizarse una consulta, el sistema primero verifica si la respuesta ya está cacheada en Redis. Si es

así, devuelve el resultado inmediatamente. Si no, realiza la consulta a la base de datos TimescaleDB,

almacena el resultado en Redis y luego lo devuelve.

• Contenedores para cada componente:

Toda la infraestructura está desplegada en contenedores Docker, lo que facilita la escalabilidad, el

despliegue y la replicación en entornos diferentes.

1.4.3 Esquema de la Arquitectura

En la figura 1-1, se presenta un esquema con la estructura general del proyecto con el fin de facilitar la

comprensión de este al lector. Podemos distinguir 5 elementos principales:

• Placa Arduino + Sensor DHT11:

Captura los datos ambientales del entorno físico. El sensor toma medidas periódicamente, y las

transmite vía puerto serie.

• Script de procesamiento (JavaScript):

Lee los datos del sensor, los procesa y los envía para su inserción en la base de datos TimescaleDB.

• Base de datos TimescaleDB:

Base de datos especializada en series temporales. Almacena los registros juntos con sus marcas de

tiempo.

• Sistema Caché Redis:

Sistema de almacenamiento en memoria para la caché de resultados de consultas recurrentes.

• Contenedores Docker:

Cada uno de los servicios anteriores (TimescaleDB, Redis, script) se ejecuta en su contenedor respectivo

2 Marca de tiempo que identifica cuándo ocurrió un evento, generalmente con precisión de milisegundos.

 Introducción

4

gestionado por Docker y que los conecta entre sí mediante una red virtual docker común.

Figura 1-1. Arquitectura

1.5 Estructura de la memoria

En esta sección, se da un breve resumen de lo que trata cada apartado clave de la memoria:

A. Introducción:

Este capítulo inicial establece el contexto general del proyecto, exponiendo la motivación que ha

impulsado su desarrollo, así como los objetivos planteados, los antecedentes relevantes y las

funcionalidades. Se justifica la elección de las tecnologías empleadas y se presenta una visión preliminar

de la arquitectura implementada para facilitar su comprensión al lector.

B. Recursos Utilizados:

En este apartado se detallan los recursos tanto hardware como softwares empleados para el desarrollo

del sistema

C. Estado del arte:

Este capítulo recoge un análisis de las tecnologías fundamentales utilizadas en el proyecto, con especial

atención a TimescaleDB y Redis. Se revisan sus características, arquitectura interna ventajas y casos de

uso típicos, así como su adecuación para sistemas de series temporales y almacenamiento en caché.

D. Desarrollo del proyecto:

El núcleo técnico del trabajo se presenta en este apartado. Se describe de forma detallada el proceso de

diseño, implementación y puesta en marcha del sistema completo. Se aborda la obtención de datos

mediante Arduino, la transmisión y tratamiento de estos, su almacenamiento en TimescaleDB y la

integración de Redis como capa de caché. También se incluye la estructura de los contenedores Docker

y la interconexión entre los diferentes módulos.

E. Conclusiones y líneas futuras:

Este apartado recoge una reflexión sobre los resultados obtenidos y el cumplimiento de los objetivos

propuestos. Se presentan tanto conclusiones técnicas como personales, valorando la experiencia

adquirida a lo largo del proyecto. Además, se identifican posibles líneas de mejora y extensión del

sistema, proponiendo futuras actuaciones.

5

5 Almacenamiento y optimización de series temporales de medidas ambientales mediante TimescaleDB

y caché Redis.

 En este capítulo se han expuesto los objetivos, la motivación y el contexto en el que se desarrolla el proyecto.

Estos elementos permiten comprender la importancia de gestionar datos en tiempo real y la necesidad de diseñar

un solución eficiente. En los capítulos siguientes se profundizará en las tecnologías disponibles y en cómo se

aplican al caso de estudio.

Almacenamiento y optimizacio n de series temporales de medidas ambientales mediante TimescaleDB y cache Redis.

7

Recursos Utilizados

8

2 RECURSOS UTILIZADOS

Durante este proyecto, se han utilizado múltiples recursos hardware y software para lograr su correcta

implementación.

2.1 Recursos Hardware

2.1.1 Portátil

Para la implementación del proyecto, las pruebas y la redacción de este documento, se ha usado el portátil Acer

TravelMate TMP215-53 que se puede ver en la figura 2-1.

Figura 2-1. Portátil Acer TravelMate TMP215-53.

Sus principales características son las siguientes [2]:

• Procesador Intel Core i5 de undécima generación.

• Pantalla de 15.6 pulgadas con resolución Full HD (1920x1080 pixeles).

• Memoria RAM de 8 GB.

• Memoria SSD de almacenamiento de 1TB.

9 Almacenamiento y optimización de series temporales de medidas ambientales mediante TimescaleDB

y caché Redis.

2.1.2 Placa Arduino

Para programar y poner en funcionamiento el sensor de temperatura y humedad se utiliza una placa Arduino

AZ-Delivery UNO que podemos observar en la figura 2-2.

Figura 2-2. Placa Arduino AZ-Delivery UNO.

Sus principales características son [3]:

• Microcontrolador AZ-ATMega328.

• 14 pines de E/S digitales.

• 6 pines analógicos.

• 6 pines E/S digitales PWM.

2.1.3 Sensor DHT11

El dispositivo que toma las medidas de temperatura y humedad es el sensor DHT11 que se puede observar en la

figura 2-3.

Figura 2-3. Sensor DHT11

Sus principales características son [4]:

• Tensión de alimentación de 5 voltios.

• Consumo típico en ejecución de 0.2 miliamperios.

Recursos Utilizados

10

• Rango de temperaturas de 0 a +50 grados Celsius.

• Rango de humedad de 20 a 90% de Humedad Relativa.

2.2 Recursos Software

2.2.1 Arduino IDE

El software Arduino, también llamado Arduino IDE, es una aplicación que permite escribir, compilar y cargar

código en placas Arduino. Su editor de código está basado en C/C++ con funciones específicas para controlar

entradas/salidas. Permite la lectura de sensores, controlar actuadores, enviar/Recibir datos vía puerto serie,

comunicarte con otros dispositivos y automatizar procesos físicos simples. [5]

Figura 2-4. Arduino

2.2.2 JavaScript

JavaScript ha sido el lenguaje escogido para desarrollar el script de adquisición de datos. Es un lenguaje de

programación de scripts, utilizado principalmente para añadir interactividad y contenido dinámico a las páginas

web. lenguaje de programación interpretado, dinámico, basado en prototipos y asíncrono [6].

Figura 2-5. JavaScript

11 Almacenamiento y optimización de series temporales de medidas ambientales mediante TimescaleDB

y caché Redis.

 2.2.3 Node.js

Node.js ha sido elegido para ser el entorno de ejecución de la API. Es un entorno de ejecución JavaScript que se

caracteriza por ser asíncrono y basado en eventos. [7]

Figura 2-6. Node.js

2.2.4 Redis

Es una base de datos en memoria RAM que funciona como un almacén de estructuras de datos clave-valor, lo

que permite acceder a los datos con una rapidez excepcional. Esta característica lo convierte en una herramienta

ideal para implementar sistemas de caché donde la velocidad de lectura y escritura es crítica. [8]

Figura 2-7. Redis

2.2.5 Ubuntu

El sistema operativo elegido para el desarrollo del script, la base de datos TimescaleDB, la ejecución en local de

la base de datos y del script, el desarrollo de los contenedores Docker y su posterior despliegue, ha sido Ubuntu.

Figura 2-8. Ubuntu

Recursos Utilizados

12

2.2.6 Windows 10 PRO

El sistema operativo elegido para desarrollar el sketch de Arduino y su puesta en marcha es Windows 10 PRO.

Figura 2-9. Windows 10 PRO

2.2.7 TimescaleDB

TimescaleDB es una extensión de la base de datos relacional PostgreSQL optimizada para el almacenamiento y

consulta eficiente de series temporales. En el proyecto, actúa como el repositorio principal de los datos

ambientales obtenidos.

Figura 2-10. TimescaleDB

2.2.8 Docker

Docker es una herramienta de contenerización para desplegar de forma modular y aislada distintos componentes

de un sistema. Permite una configuración homogénea y una gestión sencilla de dependencias, redes virtuales y

volúmenes de persistencia. [9]

Figura 2-11. Docker

13 Almacenamiento y optimización de series temporales de medidas ambientales mediante TimescaleDB

y caché Redis.

 2.2.9 Mozilla Firefox

Es el navegador elegido para poder visualizar los resultados de las consultas a la base de datos.

Figura 2-12. Mozilla Firefox

2.2.10 Visual Studio Code

Es un editor de código gratuito y ligero de Microsoft. Se caracteriza por el soporte de múltiples lenguajes y

entornos, autocompletado de código inteligente, depuración y una amplia variedad de extensiones para nuevas

funcionalidades. [10]

Figura 2-13. Visual Studio Code

En este capítulo se han descrito los recursos de hardware y software necesarios para el desarrollo del proyecto.

La selección realizada responde a criterios de disponibilidad, eficiencia y compatibilidad. Estos recursos

constituyen la base práctica sobre la que se construirá la solución.

Recursos Utilizados

14

Almacenamiento y optimizacio n de series temporales de medidas ambientales mediante TimescaleDB y cache Redis.

11

3 ESTADO DEL ARTE

En este capítulo se revisan y analizan principales tecnologías, herramientas y enfoques relacionados con el

diseño e implementación de sistemas de monitorización ambiental en entornos IoT, con especial énfasis en el

uso de bases de datos de series temporales, sistemas de caché y contenedores para despliegue.

3.1 Contextualización: IoT y Monitorización ambiental

En este apartado hablaremos sobre IoT y su uso en la monitorización ambiental.

3.1.1 Definición y evolución del Internet de las Cosas (IoT)

El término Internet de las Cosas hace referencia al proceso de conectar los elementos físicos cotidianos al internet

como sensores, actuadores, electrodomésticos etc. [11] Con el objetivo de recopilar, intercambiar y procesar

datos de manera autónoma a través de redes de comunicación. El concepto ha ido evolucionando desde el

reconocimiento de la importancia de la identificación y localización de dispositivos mediante RFID en la década

de 2000, fue entonces cuando la madurez de las tecnologías inalámbricas y la electrificación masiva permitió la

proliferación de soluciones IoT escalables [12].

En la actualidad, el IoT abarca desde aplicaciones de domótica básica (luces, climatización, alarmas) hasta

sistemas industriales de gran envergadura (Industria 4.0), pasando por sectores como agricultura de precisión,

salud y ciudades inteligentes [12]. En todos estos ámbitos, la característica común radica en la necesidad de

monitorizar parámetros físicos como temperatura y humedad, y prestar servicios asociados como notificaciones,

análisis predictivo o control remoto.

3.1.2 Importancia de la monitorización ambiental en IoT

La monitorización ambiental consiste en medir y recopilar de manera continua y sistemática distintas variables

mediante sensores y dispositivos conectados [13]. Hay varias razones por las que es importante [13]:

• Control de entornos peligrosos: Lugares como laboratorios, almacenes de productos o invernaderos

requieren de un control total de los factores ambientales para garantizar la seguridad e integridad de lo

que se encuentra en su interior.

• Aplicaciones en salud y seguridad: Monitorear la calidad del aire en hospitales y espacios públicos

ayuda a detectar a tiempo condiciones peligrosas.

• Agricultura de precisión: El control de la temperatura y humedad del suelo en cultivos puede mejorar

la producción y reducir el consumo de agua.

• Eficiencia energética: La gestión de climatización y sistemas de ventilación se basa en datos

ambientales que permiten optimizar su consumo energético.

Estado del Arte

12

12

3.1.3 Arquitecturas de sistemas IoT para monitorización ambiental

A continuación, se lista las capas que suelen formar parte de la mayoría de las arquitecturas IoT [14]:

• Capa de percepción: Es la base de la arquitectura IoT. Incluye los sensores y actuadores instalados en

el entorno físico. En nuestro caso, es el sensor DHT11 junto con la placa Arduino.

• Capa de red: Es la responsable de transportar los datos recopilados por los dispositivos hacia sistemas

centrales para su análisis y procesamiento. En este proyecto sería el enlace serial entre la placa Arduino

y el equipo local.

• Capa de procesamiento: Engloba los servicios de almacenamiento, procesamiento, análisis y

visualización. En nuestro caso, sería la base de datos TimescaleDB.

• Capa de aplicación: Representa las aplicaciones, interfaces o paneles de control para el usuario final.

En este trabajo sería el navegador donde se muestran los resultados de las consultas a la base de datos.

• Capa de seguridad: Implementa autenticación, encriptación y control de accesos para proteger la

integridad de datos. En nuestro caso, no implementamos esta capa.

3.2 Datos Temporales

A la hora de diseñar un sistema de monitorización ambiental, es preciso comprender las particularidades de los

datos generados. Gestionar eficientemente las series temporales de datos de sensores (periódicos o por eventos)

es un desafío característico de las aplicaciones IoT.

3.2.1 Definición de series temporales

Una serie temporal es una variable estadística cuyas observaciones están ordenadas cronológicamente [15]. En

el contexto de la monitorización ambiental, cada observación comprende un valor de temperatura o humedad

junto con una marca de tiempo que indica cuándo se hizo la lectura.

3.2.2 Componentes fundamentales de los datos de series temporales

A continuación, se enumeran los componentes fundamentales [16]:

• Tendencia: Dirección general de los datos a lo largo del tiempo, como aumento, disminución o

constante.

• Estacionalidad: Patrones de datos que se repiten a lo largo de un conjunto de períodos de tiempo, como

diario, mensual o anual.

• Variaciones Cíclicas: Patrones de datos que se repiten, pero no son estacionales y se producen a lo

largo de varios años.

• Variaciones irregulares: Altibajos impredecibles que no se pueden explicar con otros componentes.

3.2.3 Retos en la gestión de series temporales

Durante este apartado se hablará de los siguientes retos en la gestión de retos temporales:

• Escalabilidad horizontal o vertical:

La base de datos debe escalar sin perder rendimiento a medida que aumenta el número de sensores o la

frecuencia de muestreo. En fases iniciales puede que la escalabilidad vertical sea suficiente, pero a largo

plazo probablemente se necesite escalabilidad horizontal para distribuir carga

• Control de la latencia de escritura:

Un aumento de la latencia de escrituras puede provocar la pérdida de datos o inconsistencias temporales

por ello se debe garantizar que las inserciones de nuevos datos no se retrasen demasiado.

13 Almacenamiento y optimización de series temporales de medidas ambientales mediante TimescaleDB

y caché Redis.

 • Gestión de grandes volúmenes históricos:

El almacenamiento indefinido de lecturas conduce en pocos años a volúmenes de información de

terabytes o más. Es necesario implementar estrategias de compresión, particionado temporal y políticas

de retención.

• Optimización de consultas de agregados:

Cálculos de estadísticas en rangos temporales muy amplios pueden provocar sobrecarga en tiempo de

cómputo.

• Consistencia temporal:

Asegurar que las marcas de tiempo sean comparables y constantes entre nodos es un reto.

• Integración con sistemas de caché:

Para reducir la latencia de acceso a los datos se recurre a sistemas de caché en memoria, lo cual añade

complejidad arquitectónica.

3.3 Plataformas para Series Temporales: Enfoque en TimescaleDB

Existen muchas alternativas en el mercado para afrontar el desafío de gestionar series temporales. A

continuación, se realiza una revisión comparativa de las más relevantes, con especial profundización en

TimescaleDB, la tecnología seleccionada en este proyecto.

3.3.1 Bases de datos especializadas en series temporales

En este apartado se realizará una comparativa entre los distintos sistemas especializados de bases de datos de

series temporales:

• InfluxDB:

o Descripción: Base de datos de código abierto diseñada exclusivamente para datos de series

temporales. Emplea un motor de almacenamiento propio optimizado para escrituras frecuentes

y compresión de datos [17].

o Ventajas: Alta velocidad de escritura, compresión de datos eficiente y lenguaje de consulta

especifico enfocado en operaciones temporales [17].

o Desventajas: Menos ecosistema SQL genérico y algunos componentes requieren licencias en

el caso de la versión de empresa.

• OpenTSDB:

o Descripción: Es una base de datos de series temporales distribuida y escalable montada sobre

Hbase3 [18].

o Ventajas: Escalabilidad horizontal ilimitada [19].

o Desventajas: Complejidad de despliegue y mantenimiento, latencias de consulta más elevadas

para agregaciones complejas y una curva de aprendizaje elevada [19].

• Graphite:

o Descripción: Herramienta orientada a métricas de infraestructuras como servidores o redes

[20].

o Ventajas: Fácil instalación y buena integración con herramientas de visualización [20].

o Desventajas: Baja escalabilidad al almacenar los datos en archivos locales y carece de lenguaje

de consulta SQL [20].

3 Sistema de gestión de base de datos NoSQL distribuida de código abierto.

Estado del Arte

14

14

• QuestDB:

o Descripción: Base de datos de series temporales de código abierto que ofrece una ingesta

ultrarrápida de datos y consultas SQL dinámicas de baja latencia [21].

o Ventajas: Ingesta de alta velocidad de datos, rendimiento solido en hardware limitado y

formato de almacenamiento en columnas [21].

o Desventajas: Ecosistema y comunidad más reducidos que PostgreSQL.

• Prometheus:

o Descripción: Es un motor de código abierto para monitorización de sistemas que recolecta

métricas a través de un modelo basado en HTTP [22].

o Ventajas: Lenguaje de consulta flexible, no depende del almacenamiento distribuido y

compatibilidad con múltiples modos de gráfico y paneles [22].

o Desventajas: Su modelo de retención de datos y escalabilidad nativa está pensado para la

monitorización de infraestructuras, no para datos IoT heterogéneos a gran escala.

3.3.2 Bases de datos relacionales con extensiones para series temporales

En este apartado se hablará sobre PostgreSQL y las distintas extensiones disponibles para el manejo de series

temporales y se analizará en profundidad TimescaleDB, que es la que se ha elegido para implementar en este

proyecto.

3.3.2.1 PostgreSQL con extensión para series temporales

PostgreSQL es una base de datos relacional que ofrece fiabilidad, robustez, integridad transaccional y un amplio

abanico de extensiones [23]. Algunas de las extensiones ofrecen capacidades específicas de series temporales:

• TimescaleDB: Es la extensión más relevante ya que implementa hypertables4 y chunks5 que facilitan

la inserción masiva, la compresión de datos y la creación de agregaciones continuas (vistas

materializadas que se actualizan automáticamente de manera incremental).

• PipelineDB: Orientada a procesamiento continuo de flujo de datos (ya no está mantenida oficialmente).

• Cstore_fdw: Es una extensión que proporciona almacenamiento columnar en PostgreSQL, útil para

lectura analítica en lotes, pero no está optimizada para inserciones frecuentes.

Por un lado, las ventajas de usar PostgreSQL con extensiones son: La integridad transaccional y soporte

completo SQL estándar, un ecosistema maduro con multitud de herramientas, facilidad de migración y

portabilidad de datos [24]. Por otra parte, las desventajas son un overhead6 de las transacciones ACID para

inserciones de alta frecuencia si no se configura correctamente [25] y tener que ejecutar la base de datos en

versiones recientes para obtener las mejoras de optimización [26].

4 Tablas de PostgreSQL que se particionan automáticamente por tiempo, lo que las convierte en una forma eficiente de almacenar y consultar
datos de series temporales.
5 Unidades fundamentales de almacenamiento dentro de las hipertablas.
6 Se refiere al costo, en términos de rendimiento y recursos, que implica garantizar que las transacciones cumplan con las propiedades ACID
(Atomicidad, Consistencia, Aislamiento y Durabilidad)

15 Almacenamiento y optimización de series temporales de medidas ambientales mediante TimescaleDB

y caché Redis.

 3.3.2.2 TimescaleDB

A continuación, se analiza en profundidad TimescaleDB, ya que es la tecnología que se ha utilizado en el

proyecto:

1. Arquitectura y fundamentos de TimescaleDB:

o Hypertables: Una hypertable se define como una tabla virtual que se particiona en múltiples

tablas físicas denominadas chunks. Cada chunk corresponde a un intervalo de tiempo y puede

distribuirse en múltiples nodos [27]. La definición de una hypertable se realizaría de la siguiente

manera:

Figura 3-1. Definición de una Hypertable.

 Se crea una hypertable a partir de una tabla normal creada anteriormente de nombre

“conditions” y se le añade la columna temporal obligatoria que es la que contiene los timestamp.

o Indexación: Para agilizar consultas por rango temporal, TimescaleDB usa índices compuestos

por la columna de timestamp más otra columna clave. Un ejemplo sería este:

Figura 3-2.Crear Índice.

Se crea un índice en “readings” en orden descendente porque los filtros temporales son

prioritarios y luego la segunda columna del índice es de “sensor_id”.

o Compresión: TimescaleDB utiliza un subsistema de compresión que aplica algoritmos de tipo

RLE para reducir el tamaño de los históricos. Un ejemplo sería este:

Figura 3-3.Compresión datos.

Con esto conseguiremos que las lecturas de hace más de 7 días se compriman, manteniendo los

datos actualizados y optimizando el espacio en disco.

o Agregados Continuos: Nos permite preprocesar y almacenar resultados de consultas de

agregación en ventanas temporales, reduciendo drásticamente el tiempo de ejecución para

consultas históricas frecuentes. Un ejemplo sería:

Estado del Arte

16

16

 Figura 3-4.Creación de Vista Materializada.

La vista materializada “readings_hourly” se actualizará de forma incremental a medida que

lleguen datos nuevos.

o Políticas de retención y particionado: Se pueden aplicar reglas automáticas de eliminación

de chunks antiguos: Un ejemplo sería:

 Figura 3-5.Creación de política de eliminación.

Ahora, cualquier chunk cuya ventana temporal supere los 30 días se eliminará, manteniendo un

tamaño de base de datos controlado.

o Paralelismo en consultas: TimescaleDB explota las capacidades de PostgreSQL para

consultas paralelas, de forma que las agregaciones sobre chunks múltiples se ejecutan en

paralelo, reduciendo tiempos de respuesta en análisis de grandes volúmenes.

2. Comparativa de rendimiento

Diversos estudios han comparado el rendimiento de TimescaleDB con otras bases de datos de series temporales

como InfluxDB y QuestDB. A continuación, se presentan los hallazgos más relevantes:

o Velocidad de inserción:

InfluxDB logra una tasa de inserción de aproximadamente 330.000 puntos de datos por segundo con 4

millones de series temporales únicas, mientras que TimescaleDB alcanza unos 480.000 puntos por

segundo. Es cierto que InfluxDB tiene un rendimiento algo mejor en inserciones puras debido a su

motor TSM optimizado, TimescaleDB puede mejorar su rendimiento con la configuración adecuada de

algunos parámetros, el uso de hypertables multimodo y mayor paralelismo [28].

o Costo de almacenamiento:

TimescaleDB puede alcanzar ratios de compresión de 3:1 a 5:1 en datos históricos. Aunque InfluxDB

también incorpora compresión, en escenarios de datos heterogéneos, se ve superada por la eficiencia de

TimescaleDB [29].

o Flexibilidad del lenguaje SQL:

A diferencia de InfluxQL7 (InfluxDB) o PromQL8 (Prometheus), TimescaleDB soporta SQL estándar

con extensiones propias. Esto facilita la integración con sistemas existentes, herramientas de BI y

arquitecturas que ya emplean PostgreSQL [30].

7 Lenguaje de consulta de tipo SQL diseñado para interactuar con InfluxDB, una base de datos de series temporales.
8 Lenguaje de consulta funcional utilizado para interrogar y agregar datos de series temporales recopilados por el sistema de monitorización
Prometheus

17 Almacenamiento y optimización de series temporales de medidas ambientales mediante TimescaleDB

y caché Redis.

 o Consultas de agregados:

TimescaleDB destaca en consultas complejas sobre rangos largos de tiempo gracias a sus agregaciones

continuas. Estas vistas materializadas incrementales permiten tiempos de respuesta muy reducidos, en

el orden de milisegundos, para estadísticas diarias o semanales. Además, las políticas de agregación

continua han sido optimizadas en versiones recientes, reduciendo el uso de recursos del sistema y

mejorando la eficiencia [31].

3. Caso de uso en monitorización de temperatura y humedad

En este trabajo, la arquitectura que se propone requiere gestionar las lecturas de temperatura y humedad que

envía el sensor DHT11 cada cierto intervalo de tiempo. Las operaciones vitales que se beneficiarán de

TimescaleDB son:

o Inserciones continuas: El script de JavaScript ejecuta una inserción por cada lectura recibida por el

sensor DHT11. Gracias a la partición por chunk, estas medidas se dirigen siempre al chunk del día en

curso, reduciendo la contención de índices.

o Consulta de valores recientes: Si se desea obtener los valores de las mediciones de la última hora es

bastante sencillo ya que basta con filtrar en la hypertable aprovechando los índices en la columna “time”.

Un ejemplo de lo anterior sería:

 Figura 3-6. Ejemplo Filtrado por time.

• Agregados diarios/semanales: Se hace uso de las “Vistas Materializadas” para obtener promedios,

máximos y mínimos, con actualizaciones incrementales. Un ejemplo de lo anterior sería:

 Figura 3-7. Ejemplo de Agregación continua.

3.4 Sistemas de Caché en entornos IoT: Enfoque en Redis.

En soluciones IoT donde la base de datos de series temporales recibe miles de lecturas diarias y tiene que atender

consultas de múltiples usuarios, la incorporación de un sistema caché en memoria es esencial para reducir la

latencia de consultas frecuentes o complejas. En esta sección del trabajo, se analiza el papel de la memoria caché,

se comparan alternativas y se profundiza en Redis como tecnología elegida.

3.4.1 Rol de la Memoria Caché

Un Sistema de caché interpuesto entre la capa de almacenamiento permanente (Base de datos TimescaleDB) y

las capas de consultas tiene las siguientes funciones:

Estado del Arte

18

18

• Reducción de latencia:

Al almacenar en la memoria caché los resultados de consultas ya ejecutadas como por ejemplo la

temperatura media diaria, cuando se realiza una consulta idéntica, se devuelve el resultado directamente

desde el caché en lugar de volver a tener que calcularlo en la base de datos permanente.

• Escalabilidad Horizontal:

Al desplegar instancias replicadas de un sistema de caché, es posible distribuir la carga de lectura del

sistema. El caché puede repetirse en múltiples réplicas para servir muchas peticiones simultáneas sin

saturar la capa persistente.

• Menos carga en la base de datos:

La memoria caché hace de primer frente de respuesta, lo que disminuye el numero de consultas a

TimescaleDB y la reserva para operaciones críticas o consultas complejas no cacheadas.

• Control de expiración y consistencia:

El sistema caché debe tener políticas que indiquen cuándo un valor almacenado es obsoleto. En este

caso, un TTL corto de unos 60 segundos para datos recientes puede asegurar que las lecturas reflejan

cambios casi en tiempo real.

3.4.2 Comparativa general de soluciones de Sistemas Caché

A continuación, se listan las distintas soluciones de sistemas caché:

• Memcached

o Descripción: Es un almacén de datos en la memoria de alto rendimiento y fácil de usar [32].

o Ventajas: Tiempos de respuesta por debajo del milisegundo, simplicidad y facilidad de uso,

escalabilidad y buena comunidad [32].

o Desventajas: No tiene persistencia incorporada, no soporta estructuras complejas y no admite

replicación nativa ni clustering9 automático [33].

• Redis

o Descripción: Es un almacén de estructura de datos de valores de clave en memoria rápido y

de código abierto [34].

o Ventajas: Desempeño muy rápido, estructuras complejas de datos en memoria, versatilidad,

facilidad de uso, replicación asíncrona, persistencia con snapshots10 y gran compatibilidad con

muchos lenguajes de programación [34].

o Desventajas: Consumo de memoria relativamente elevado.

• Apache Ignite

o Descripción: Es una plataforma distribuida en memoria que funciona como caché, base de

datos y sistema de procesamiento [35].

o Ventajas: Integración de caché y procesamiento, tolerancia a fallos y persistencia opcional

[35].

o Desventajas: Complejidad de despliegue, curva de aprendizaje elevada y sobredimensionado

para IoT simple.

• Couchbase (en modo caché)

o Descripción: Base de datos NoSQL que mediante su módulo de “couchbase bucket” en

9 Técnica de análisis de datos que agrupa elementos similares en conjuntos denominados "clústeres".
10 Copia lógica de un sistema de archivos, base de datos o incluso una máquina virtual en un momento específico.

19 Almacenamiento y optimización de series temporales de medidas ambientales mediante TimescaleDB

y caché Redis.

 memoria, ofrece funcionalidades de caché [36].

o Ventajas: Integración nativa con capa de persistencia en disco, alto rendimiento, desarrollo

simple, versátil [36].

o Desventajas: Complejidad de configuración.

En entornos IoT donde prima la alta velocidad y se requiere de una caché de bajo nivel, Redis se considera la

mejor opción, debido al amplio conjunto de estructuras de datos que maneja y a su modelo de replicación y

persistencia configurable.

3.4.3 Arquitectura de Redis y características relevantes

Redis es una base de datos en memoria orientada a pares clave-valor con persistencia opcional.

3.4.3.1 Estructura de datos

En esta sección se listarán los distintos tipos de datos que maneja Redis [37]:

• Strings: Estructura de datos binaria segura. Puede almacenar cualquier tipo de datos: una cadena, un

entero, un valor de punto flotante, una imagen JPEG, un objeto Ruby serializado o cualquier otra cosa

que desee que tenga.

• Hashes: Almacena un conjunto de pares campo-valor.

• Lists: Contienen colecciones de elementos de cadena ordenados según su orden de inserción.

• Sets: Almacena un conjunto único de miembros.

• Sorted Sets: Contienen un conjunto único de miembros ordenados por puntuaciones de punto flotante

• Bitmaps: Es una estructura de datos compacta para almacenar lógica y estados binarios.

• Bitfields: Ofrecen una forma eficiente y compacta de implementar múltiples contadores en una sola

matriz.

• HyperLogLog: Es una estructura de datos probabilística que se usa para contar valores únicos con un

tamaño de memoria constante.

• Geospatial indexes: Proporcionan una forma extremadamente eficiente y sencilla de gestionar y

utilizar los datos geoespaciales en Redis.

• Streams: Es una estructura de datos increíblemente potente para gestionar flujos de datos de alta

velocidad.

3.4.3.2 Persistencia

Redis ofrece dos modos principales [38]:

• AOF (Append Only File):

Registra cada operación de escritura en un archivo de disco en tiempo real. Este mecanismo garantiza

que, al reiniciar el servidor, todas las operaciones pueden volverse a ejecutar, recuperando así los datos

incluso después de una caída abrupta.

• RDB (Redis Database Backup):

Genera snapshots periódicos de la base de datos en un archivo con extensión “.rdb”, configurables por

números de escrituras o intervalos de tiempo. Su ventaja es el bajo impacto en el rendimiento, pero no

garantiza la persistencia de cada operación entre snapshots.

Estado del Arte

20

20

3.4.3.3 Replicación y alta disponibilidad

Redis ofrece múltiples mecanismos para garantizar alta disponibilidad y tolerancia a fallos. Entre ellos destacan

tres enfoques [39]:

• Redis Máster-Slave:

Un nodo maestro (master) gestiona las operaciones de escritura y replica los cambios en uno o más

nodosos esclavos (slaves), permitiendo lecturas escalables.

 Figura 3-8. Redis Master-Slave.

• Redis Sentinel:

Monitorea nodos maestros/esclavos, detecta fallos y promueve un esclavo a maestro si el maestro

original cae.

 Figura 3-9. Redis Sentinel.

• Redis Cluster:

Fragmenta el espacio de claves en slots11 y distribuye nodos maestros y esclavos para escalabilidad y

tolerancia a fallos.

11 Representan la manera en que Redis divide el espacio de claves para distribuir las operaciones entre los diferentes nodos del clúster.

21 Almacenamiento y optimización de series temporales de medidas ambientales mediante TimescaleDB

y caché Redis.

 Figura 3-10. Redis Cluster.

3.4.4 Uso de Redis como capa caché en monitorización ambiental.

En el escenario de recopilación de datos de temperatura y humedad, las consultas más frecuentes podrían

clasificarse en:

• Lecturas en vivo: Solicitudes de las lecturas más recientes para graficar en tiempo real.

• Agregados de corto plazo: Promedios, mínimos y máximos de la última hora.

• Agregados prolongados: Estadísticas diarias o semanales.

• Datos históricos puntuales: Lectura de eventos específicos o comparaciones.

Redis puede cachear las lecturas en vivo almacenando en una lista o Sorted los últimos N valores ordenados por

timestamp y cuando un cliente solicite los “últimos 15 valores”, la aplicación lee directamente del caché. Para

los agregados de corto plazo, se calcula la consulta en TimescaleDB y se almacena el resultado en Redis con su

clave y con TTL de 60 segundos para que la clave expire al pasar ese tiempo y la siguiente consulta recalcule.

En el caso de los agregados prolongados se utilizarían vistas materializados y un TTL superior, de 3600 segundos

por ejemplo ya que las estadísticas horarias para días anteriores cambian solo cuando TimescaleDB recalcule la

vista materializada. Por último, para los datos históricos puntuales, como no se consultan con frecuencia, no

hace falta cachearlos y se dirige la solicitud directamente a TimescaleDB.

3.5 Contenerización y Despliegue: Enfoque en Docker

El uso de contenedores ha revolucionado la forma de desarrollar, probar y desplegar aplicaciones, ofreciendo

entornos reproducibles, aislados y ligeros. En proyectos IoT que integran múltiples componentes, Docker facilita

la orquestación y gestión de dependencias.

3.5.1 Concepto de contenedor y diferencias con máquinas virtuales

Los contenedores docker proporcionan un entorno aislado para ejecutar aplicaciones, incluyendo todos los

componentes necesarios para su funcionamiento, como librerías y configuraciones. Esta solución, más ligera

que las máquinas virtuales tradicionales, se beneficia del uso compartido del kernel12 del sistema operativo, lo

que reduce el consumo de recursos y acelera el inicio del servicio.

12 Parte fundamental del sistema operativo que se ejecuta en modo privilegiado para gestionar los recursos del sistema y permitir la
comunicación entre el hardware y el software.

Estado del Arte

22

22

Las principales ventajas de emplear Docker son [40]:

• Aislamiento: Cada contenedor corre en su espacio aislado, evitando conflictos de versiones o puertos

TCP.

• Portabilidad: Los contenedores construidos en un sistema operativo (Windows, macOS, Linux) se

despliegan igual en otro host con Docker instalado.

• Reproducibilidad: Garantiza que las versiones de dependencias y configuraciones sean idénticas en

todos los entornos.

• Ligereza: Un contenedor ocupa megabytes13, mientras que una máquina virtual ocupa gigabytes14.

• Escalabilidad: Con herramientas de orquestación, se puede conseguir balancear la carga y mantener

una alta disponibilidad mediante la replicación de contenedores.

3.5.2 Docker en arquitecturas IoT

En IoT, Docker se utiliza como herramienta habitual para desplegar:

• Servidores de bases de datos: InfluxDB, PostgreSQL etc.

• Sistemas de caché: Memcached, Redis.

• Dashboards y aplicaciones web: Grafana, Node-RED, Kibana.

• APIs y microservicios: Servicios REST que reciben datos de sensores y los encaminan a la base de

datos

• Gateways o microservicios de edge computing: Raspberry Pi o micro-PCs que ejecutan contenedores

para preprocesar datos localmente.

Una de las ventajas clave que ofrece Docker en el contexto IoT es la facilidad para crear y gestionar redes

internas virtuales entre contenedores. Esta funcionalidad permite que los diferentes servicios que conforman la

arquitectura de solución IoT se comuniquen entre si de forma directa, segura y eficiente. Docker permite definir

redes personalizadas en las que cada contenedor puede ser identificado por un nombre de servicio, lo cual

simplifica enormemente la configuración de los sistemas distribuidos [41].

En el caso de este proyecto, donde un contenedor ejecuta un script de adquisición de datos, otro gestiona la base

de datos de series temporales (TimescaleDB) y un tercero actúa como caché (Redis), todos estos servicios

pueden intercambiar información sin necesidad de exponer sus puertos al exterior. Esto mejora la seguridad,

favorece el aislamiento del sistema y reduce la necesidad de configuraciones de red complejas.

3.5.3 Docker Compose para orquestación local

En entornos de desarrollo y prueba, Docker Compose es la herramienta que permite desplegar múltiples

contenedores mediante un solo fichero llamado “docker-compose.yml”.

Las principales partes de este archivo son [42]:

• Version: Define la versión del esquema de Compose. Se pone al principio.

 Figura 3-11. Docker Compose-Version.

13 Unidad estándar en la informática y la tecnología digital que indica el tamaño de un archivo o la capacidad de una memoria de datos.
Equivale a 1 millón de bytes.
14 Unidad de medida de almacenamiento de datos que equivale a 1.000 millones de bytes.

23 Almacenamiento y optimización de series temporales de medidas ambientales mediante TimescaleDB

y caché Redis.

 • Services: Es la sección principal donde se especifican los contendores que forman parte del sistema,

junto con su configuración.

 Figura 3-12.Docker Compose-Services.

• Volumes: Permite definir volúmenes persistentes que pueden ser montados por uno o más

contenedores.

 Figura 3-13.Docker Compose-Volumes.

• Networks: Define redes personalizadas para conectar servicios, aunque Docker Compose crea una por

defecto si no se especifica ninguna. En el ejemplo de abajo el servicio web puede comunicarse solo con

el servicio app porque pertenecen a la misma red virtual.

 Figura 3-14.Docker Compose-Networks.

• Environment: Las variables de entorno se puede definir directamente sobre el archivo o importarse

desde un archivo de extensión “.env”.

 Figura 3-15. Docker Compose-Environment.

• Depends_on: Establece el orden de inicio de los servicios, no garantiza que uno este ya levantado, pero

sí que se ha iniciado. En el ejemplo de abajo el servicio backend debe esperar a que inicien los servicios

db y redis.

Estado del Arte

24

24

 Figura 3-16. Docker Compose-Depends_on

3.5.4 Beneficios y limitaciones de Docker en IoT

A continuación, se analizan los beneficios y limitaciones de Docker en entornos IoT.

Los beneficios son los siguientes:

• Aislamiento de entornos: El contenedor del script en JavaScript no entrará en conflicto con las

versiones de JavaScript o librerías instaladas en el host.

• Reproducibilidad: Compartir el repositorio con el docker-compose y los dockerfile permite a cualquier

persona reproducir el entorno tal cual sin tareas manuales de configuración.

• Despliegue rápido: Con un solo comando “docker-compuse up -d”, se inician todos los servicios

interconectados.

Las limitaciones son las siguientes:

• Sobrecarga en dispositivos: En plataformas hardware limitadas (poca CPU o RAM).

• Persistencia de datos: Si no se configura correctamente los volúmenes, los datos pueden perderse al

destruir los contenedores.

• Complejidad inicial: Curva de aprendizaje un poco elevada para usuarios nuevos.

En conclusión, se han analizado las tecnologías y enfoques existentes en la gestión de series temporales y

almacenamiento en caché. Esta revisión ha permitido identificar las ventajas y limitaciones de diferentes

propuestas. Como resultado, se ha justificado la selección de TimescaleDB, Redis y Docker como base de la

solución.

25 Almacenamiento y optimización de series temporales de medidas ambientales mediante TimescaleDB

y caché Redis.

Desarrollo del proyecto

26

26

4 DESARROLLO DEL PROYECTO

A continuación, en este capítulo clave del proyecto se describirán varios aspectos esenciales: La arquitectura

general del sistema, Adquisición y tratamiento de datos, Persistencia de datos en TimescaleDB, Implementación

de la capa caché con Redis, Visualización de datos mediante API REST, Contenerización y despliegue y

Monitorización y logs.

4.1 Arquitectura General del Sistema

El sistema desarrollado integra la adquisición de los datos ambientales, pasando por su almacenamiento en una

base de datos y terminando por una consulta optimizada mediante una capa de caché.

Para ello se han utilizado tecnologías de código abierto y de contenedores, garantizando así un despliegue

modular y fácilmente reproducible.

Los componentes principales son los siguientes:

• Hardware: Placa Arduino con sensor DHT11 conectado por puerto USB al host.

• Software de adquisición de datos: Un servicio Node.js (busConnector.js) que lee los datos del puerto

serie y los inserta en la base de datos.

• Base de datos de series temporales: TimescaleDB, desplegada en un contenedor Docker y cuya

función es almacenar los datos de humedad y temperatura.

• Capa de caché: Redis, para almacenar temporalmente los resultados de las consultas más frecuentes,

reduciendo la latencia.

• API REST: Servicio Node.js (index.js) que expone rutas GET para consultas con y sin caché,

documentadas mediante swagger.

• Orquestación: Docker Compose, define y lanza los tres servicios principales: API Node.js,

TimescaleDB y Redis.

En el siguiente diagrama se ilustra de manera sencilla la arquitectura del sistema:

Figura 4-1. Arquitectura General del Sistema

27 Almacenamiento y optimización de series temporales de medidas ambientales mediante TimescaleDB

y caché Redis.

4.2 Adquisición y tratamiento de datos

Por un lado, la captura de datos se realiza mediante la placa Arduino, que está conectada al host a través del

puerto mapeado “dev/ttyUSB0”. Por otra parte, el sensor tiene un sketch que lo programa para tomar las medidas

de temperatura y humedad cada segundo y enviarla por el puerto serial.

El servicio Node.js a través del busConnector.js realiza las siguientes acciones:

• Abre el puerto serie y escucha tramas del sensor DHT11 donde cada par de lecturas recibidas

corresponde a humedad y temperatura.

• Inserta los valores en la tabla medidas_sensor de la base de datos, acompañados de una marca de tiempo

generada automáticamente.

Figura 4-2. Adquisición y Tratamiento de datos

El módulo busConnector.js es responsable de recibir los datos del sensor desde el puerto serie e insertarlos en la

base de datos. Algunos puntos importantes de su implementación son los que se muestran en la siguiente tabla:

Aspecto Descripción

Lectura del puerto serie Usa la librería serialport para abrir el dispositivo

/Dev/ttyUSB0 a 9600 a una velocidad de 9600

baudios que coincide con la del sensor.

Procesamiento de datos Almacena primero la humedad y después la

temperatura antes de la inserción. Además, aplica un

pequeño filtro para descartar datos no numéricos.

Inserción en base de datos Emplea Knex para insertar los registros de humedad

y temperatura en la tabla medidas_sensor con una

marca de tiempo.

Gestión de errores Maneja eventos de error del puerto serie y captura

excepciones en la inserción.

Tabla 1. Aspectos busConnector.js

Desarrollo del proyecto

28

28

4.3 Base de datos de series temporales

La base de datos TimescaleDB se ejecuta como un servicio Docker, inicializado con un usuario, contraseña y

nombre de base de datos definidos previamente en variable de entorno.

La creación de la tabla medidas_sensores se realiza mediante el script run.sh que automatiza la creación de la

tabla y su conversión a hypertable, optimizándola para manejar series temporales.

El almacenamiento en una tabla optimizada para manejo de series temporales permite:

• Escalabilidad en la ingesta de datos

• Consultas rápidas mediante índices temporales.

• La creación de vistas materializadas (vistaMaterialazada.sh) que calculan estadísticas temporales que

se actualizan de forma continua.

En la siguiente tabla se muestran las vistas materializadas que se han creado para este proyecto:

Nombre Vista Materializada Descripción Métricas calculadas

temp_y_humed_porMin Calcula las métricas para el

intervalo de tiempo de un minuto

Temperatura media, Humedad

media, Máxima Temperatura y

Máxima Humedad

temp_y_humed_porHora Calcula las métricas para el

intervalo de tiempo de una hora

Temperatura media, Humedad

media, Máxima Temperatura y

Máxima Humedad

temp_y_humed_porDia Calcula las métricas para el

intervalo de tiempo de un dia

Temperatura media, Humedad

media, Máxima Temperatura y

Máxima Humedad

Tabla 2. Vistas Materializadas

4.4 Implementación de la capa caché con Redis

Redis se ejecuta también como un servicio Docker independiente. Al realizarse una consulta, el sistema primero

busca en Redis. Si el dato existe se responde inmediatamente, pero en caso contrario, se consulta a la base de

datos, se almacena en caché y se devuelve al cliente.

La capa caché realiza las siguientes funciones:

• Almacenar resultados de endpoints15 como /concache-50, /temp-25-cache, etc.

• Se marcan los datos con un TTL de 60 segundos para que se refresquen periódicamente.

4.5 Visualización de datos mediante API REST

El servicio index.js implementa una API REST con las siguientes características:

• Conexión a PostgreSQL a través de Knex.

• Documentación interactiva con Swagger.

15 Es un punto final específico, a menudo una API, que devuelve datos que han sido previamente almacenados en caché para mejorar el
rendimiento y reducir la carga del servidor

29 Almacenamiento y optimización de series temporales de medidas ambientales mediante TimescaleDB

y caché Redis.

 • Endpoints GET diferenciados entre consultas con caché y sin caché.

• Consultas avanzadas apoyadas en vistas materializadas para estadísticas por minuto, hora y día.

A continuación, se muestran imágenes de la interfaz Swagger UI del proyecto:

Figura 4-3. Interfaz Swagger UI 1

Figura 4-4. Interfaz Swagger UI 2

Figura 4-5. Interfaz Swagger UI 3

4.6 Contenerización y despliegue

El proyecto ha sido preparado y configurado para un despliegue reproducible mediante Docker:

• En el Dockerfile se define la imagen Node.js, instalando dependencias y configurando variables de

entorno previamente definidas en datosEntorno.env

• En el Compose.yaml se definen los servicios principales que se muestran en la siguiente tabla:

Servicio Imagen/base Puertos Rol

Desarrollo del proyecto

30

30

nodejs Node18 + pm2 3000 API REST +

busConnector

seriesTemporalesDB timescale/timescaledb-

ha:pg14-latest

5432 Base de datos de

series temporales

redisCache redis:latest

6379 Capa de caché

Tabla 3. Servicios en Docker-Compose

Se hace uso en el Node.js del administrador de procesos PM2 para:

• Ejecutar el servidor y el busConnector.js como procesos independientes definidos en el archivo

ecosystem.config.js.

• Reiniciar los servicios automáticamente en caso de fallo.

• Limitar el consumo de memoria mediante parámetros.

• Gestionar logs de cada proceso de forma centralizada.

Por último, el despliegue se realiza ejecutando los siguientes comandos:

1. Construyo la imagen: sudo docker-compose build.

2. Levanto los servicios: sudo docker-compose up -d.

En este capítulo, se ha detallado el proceso de construcción del sistema, desde la captura de datos hasta su

almacenamiento y consulta. La integración de Arduino, TimescaleDB, Redis y Docker asegura la coherencia de

la propuesta. Una vez desplegado el sistema, se avanza hacia su validación experimental en los siguientes

apartados.

31 Almacenamiento y optimización de series temporales de medidas ambientales mediante TimescaleDB

y caché Redis.

Pruebas y Validaciones

32

32

5 PRUEBAS Y VALIDACIONES

El objetivo de este capítulo es demostrar el correcto funcionamiento del sistema y validar cada uno de los

componentes.

Las pruebas se realizaron en un entorno controlado utilizando herramientas específicas para verificar la

adquisición de datos, su almacenamiento, la correcta exposición mediante la API y la optimización de

rendimiento.

5.1 Entorno de pruebas

Para las validaciones se utilizó el siguiente entorno:

Componente Versión

Node.js v18.19.1

PM2 Última estable

Redis Última estable

PostgreSQL Última estable

Docker v24.0.7

Hardware Placa Arduino + Sensor DHT11

Ubuntu v24.04.1 LTS

Tabla 4. Entorno de pruebas

En la siguiente imagen se muestran los contenedores activos usados en el entorno de pruebas:

Figura 5-1. Contenedores Entorno Pruebas

5.2 Pruebas de adquisición de datos

Se verificó el funcionamiento del servicio busConnector.js:

• Con el sensor DHT11 conectado al puerto /dev/tty/USB0, se recibieron tramas de datos de humedad y

temperatura como se muestra en la Figura 5-2.

33 Almacenamiento y optimización de series temporales de medidas ambientales mediante TimescaleDB

y caché Redis.

 Figura 5-2. Comprobación de datos

• Se validó que los valores numéricos se procesan correctamente y se insertan en la tabla medidas_sensor

como se muestra en la figura 5-3 donde le pido que me devuelva las ultimas 10 filas de la tabla.

 Figura 5-3. Valores de la tabla medidas_sensor

5.3 Pruebas de almacenamiento y vistas materializadas

Una vez iniciada la base de datos TimescaleDB y ejecutados los scripts correspondientes, se comprobó:

• La creación de la tabla medidas_sensor como hypertable. En la figura 5-4 muestro que existe la tabla y

su estructura y en la figura 5-5 compruebo que es una hypertable.

Pruebas y Validaciones

34

34

Figura 5-4. Estructura tabla medidas_sensor

Figura 5-5. Hypertable medidas_sensor

• La correcta creación de las vistas materializadas: temp_y_humed_porMin, temp_y_humed_porHora y

temp_y_humed_porDia explicadas en el apartado 4.3 de este documento. Se muestran en la figura 5-6.

Figura 5-6. Vistas materializadas

• Consultas SQL de prueba para validar los resultados agregados por minuto de una de las vistas

materializadas, en este caso la de temp_y_humed_porMin. Se muestra en la figura 5-7.

Figura 5-7. Consulta datos a vista materializada

35 Almacenamiento y optimización de series temporales de medidas ambientales mediante TimescaleDB

y caché Redis.

 • Consultas SQL de prueba para validar que la vista se actualiza, en este caso, inserto dos valores muy

altos de temperatura y humedad (99) para luego consultar en la vista si se han actualizado como se ve

en la figura 5-8.

 Figura 5-8. Actualización de Vistas Materializadas.

5.4 Pruebas de la API REST

Para comprobar que la API REST funciona, las rutas expuestas en index.js fueron validadas utilizando Swagger

UI. Se probaron tanto endpoints con caché (/concache-25), /temp-25-concache, etc.) como sin caché (/sincache-

25, /temp-25, etc.).

A continuación, se muestran imágenes de los endpoints con caché:

• En /concache-25 obtenemos los últimos 25 valores de temperatura y humedad:

Figura 5-9. Comprobación de /concache-25

Pruebas y Validaciones

36

36

• En /temp-25-cache obtenemos 25 valores ordenados por temperatura decreciente:

Figura 5-10. Comprobación de /temp-25-cache

• En /humed-25-cache obtenemos 25 valores ordenados por humedad decreciente:

Figura 5-11. Comprobación de /humed-25-cache

37 Almacenamiento y optimización de series temporales de medidas ambientales mediante TimescaleDB

y caché Redis.

 • En /valores-minuto-cache se obtiene la media y valor máximo por minuto de la temperatura y la

humedad.

Figura 5-12. Comprobación de /valores-minuto-cache

Por otro lado, se muestran imágenes de los endpoints sin caché:

• En /sincache-25 obtenemos los últimos 25 valores de temperatura y humedad:

Figura 5-13. Comprobación de /sincache-25

Pruebas y Validaciones

38

38

• En /temp-25 obtenemos 25 valores ordenados por temperatura decreciente:

Figura 5-14. Comprobación de /temp-25

• En /humed-25 obtenemos 25 valores ordenados por humedad decreciente:

Figura 5-15. Comprobación de /humed-25

39 Almacenamiento y optimización de series temporales de medidas ambientales mediante TimescaleDB

y caché Redis.

• En /valores-minuto-sincache se obtiene la media y valor máximo por minuto de la temperatura y la

humedad:

Figura 5-16. Comprobación de /valores-minuto-sincache

5.5 Pruebas de la capa de caché

Para validar la funcionalidad y rendimiento de la capa de caché basada en Redis, se realizaron varias pruebas

prácticas que demuestran su correcta integración:

• Verificación del almacenamiento en caché: Desde una terminal en el sistema host, se ejecuta una

petición http a un endpoint con caché. Posteriormente, entramos al cliente de Redis y se comprueba si

la clave ha sido almacenada como se muestra en la figura 5-17.

Figura 5-17. Almacenamiento Key en Caché

• Verificación de la expiración y regeneración de la caché:

1) Desde el terminal host accedemos al cliente Redis y verificamos que no hay ninguna clave

porque no hemos hecho la consulta aun como se muestra en la figura 5-18.

Figura 5-18. Prueba caché vacía

Pruebas y Validaciones

40

40

2) Realizamos la petición http y comprobamos que la clave se ha almacenado y que su TTL es de

60 segundos, aunque en la figura 5-19 será menor porque transcurre el tiempo.

Figura 5-19. Comprobación TTL caché

3) Una vez pasados los 51 segundos de TTL que se ven en la imagen anterior, la caché debe haber

eliminado la clave como se muestra en la figura 5-20 demostrando así, su capacidad de

expiración y regeneración.

Figura 5-20. Comprobación expiración caché

• Verificación del rendimiento con caché: Para validar la mejora en tiempos de respuesta que ofrece el

sistema con caché, se utilizó la herramienta autocannon. Se lanzaron 50 conexiones simultaneas durante

10 segundos contra los endpoints /sincache-50 y /concache-50.

El resultado del endpoint sin caché es el que se muestra en la siguiente figura 5-21:

c

 Figura 5-21. Estadísticas endpoint sin caché

41 Almacenamiento y optimización de series temporales de medidas ambientales mediante TimescaleDB

y caché Redis.

El resultado del endpoint con caché es el que se muestra en la siguiente figura 5-22:

 Figura 5-22. Estadísticas endpoint con caché

Por último, en la siguiente tabla se muestra una comparación de los resultados:

Métrica Sin caché Con caché

Latencia media (Latency) 32.42 ms 12.26 ms

Peticiones/Segundo (Req/Sec) 1.518 pet/seg 3.920 pet/seg

Throughput medio (Avg) 5.93 MB/s 15.3 MB/s

Máxima latencia (Max) 150 ms 81 ms

Peticiones totales 15.000 aprox 39.000 aprox

 Tabla 5. Tabla comparativa rendimiento con caché

Los datos confirman que la capa de caché reduce la latencia en más de un 60% y que además casi triplica

la capacidad de servir peticiones por segundo, lo que supone una optimización notable del sistema.

Las pruebas realizadas han confirmado el correcto funcionamiento del sistema y su capacidad para

gestionar datos en tiempo real. Los resultados evidencian mejoras significativas en eficiencia gracias al

uso de Redis y Vistas Materializadas. Estos hallazgos validan la solución planteada y dan pie a la

reflexión global del trabajo en el siguiente apartado de conclusiones.

Pruebas y Validaciones

42

42

43 Almacenamiento y optimización de series temporales de medidas ambientales mediante TimescaleDB

y caché Redis.

6 CONCLUSIONES Y LÍNEAS FUTURAS

6.1 Cumplimiento de objetivos

El presente Trabajo de Fin de Grado ha cumplido de forma satisfactoria los objetivos establecidos al inicio. Se

ha desarrollado un sistema funcional capaz de adquirir datos de temperatura y humedad desde una placa física

Arduino, almacenarlos en una base de datos especializada en series temporales de forma estructurada

(TimescaleDB) y que puedan ser consultados por usuarios mediante una API REST documentada con Swagger.

Esta arquitectura elegida ha permitido que haya una separación clara de funciones y responsabilidades entre la

capa de adquisición, la de almacenamiento y la de visualización de datos.

Por otra parte, se integró un sistema de almacenamiento en caché con Redis para reducir la carga sobre la base

de datos y mejorar el tiempo de respuesta del sistema. Además, se ha utilizado Docker para facilitar la gestión

de servicios y permitir que la configuración sea reproducible, portátil y aislada del entorno host. La incorporación

del gestor de procesos PM2 ha permitido lanzar y mantener la API en ejecución de manera estable dentro del

contenedor. Este enfoque en contenedores ha hecho más sencillo el desarrollo y el despliegue del sistema,

sentando una base sólida para su escalabilidad o futuras mejoras.

Este proyecto no solo ha alcanzado los objetivos funcionales propuestos, sino que también ha servido como una

primera aproximación a la construcción de sistemas basados en microservicios y tecnologías actuales. Aunque

se trata de una solución enfocada al ámbito académico, su diseño facilita que pueda evolucionar hacia

aplicaciones más complejas.

6.2 Valoración del trabajo realizado

La realización de este proyecto ha supuesto una gran experiencia técnica y personal. Me ha dado la oportunidad

para trabajar con herramientas y tecnologías que no había utilizado antes y que son muy utilizadas en el ámbito

profesional como Node.js, Docker, Redis, TimescaleDB y PM2. Durante el proceso he tenido que estudiar,

comprender y aplicar conceptos clave como la persistencia de datos en contenedores, la comunicación entre

servicios mediante redes virtuales o la mejora del rendimiento en consultas a base de datos mediante técnicas de

cacheo.

Durante el desarrollo del sistema también se ha prestado atención a aspectos como la documentación clara del

sistema y la posibilidad de automatizar su despliegue. Herramientas como Swagger han permitido generar una

interfaz simple y accesible para entender y probar la API, o como autocannon, que ha sido clave para analizar el

comportamiento del sistema bajo carga, permitiendo detectar mejoras en el rendimiento al usar caché.

Por último, desde mi punto de vista este trabajo me ha servido para mejorar en metodologías de resolución de

problemas, para enfrentarme a errores de integración y para coger confianza a la hora de empezar proyectos

tecnológicos más complicados desde cero.

6.3 Líneas de mejora y trabajos futuros

Aunque el sistema cumple con los objetivos planteados, existen varias mejoras que permitirían ampliar el

proyecto:

• Visualización de datos: Sería útil desarrollar un panel o visor web que permitiera consultar

gráficamente los valore adquiridos, tendencias y alertas, facilitando su uso a usuarios no técnicos.

• Almacenamiento persistente en Redis: En este proyecto, Redis actúa como caché en memoria volátil.

Se podría implementar su persistencia en disco para conservar los datos en caso de reinicio del

Conclusiones y líneas futuras

44

44

contenedor o del sistema.

• Seguridad y autenticación: Incorporar mecanismos de autenticación en los endpoints y validación de

roles de usuario para aumentar la seguridad en caso de que este desplegado en un entorno accesible por

terceros.

• Escalabilidad en la nube: El sistema puede adaptarse para ejecutarse en plataformas cloud, pudiendo

hacer uso de balanceadores de carga y bases de datos distribuidas.

• Alertas y monitorización avanzada: Herramientas como Grafana podrían integrarse para visualizar

métricas y generar alertas.

Estas mejoras harían evolucionar al sistema hacia una solución más completa, mantenible y orientada a entornos

industriales reales.

45 Almacenamiento y optimización de series temporales de medidas ambientales mediante TimescaleDB

y caché Redis.

ANEXO A: CÓDIGO FUENTE DEL SISTEMA

En el siguiente anexo se detalla el código fuente de cada módulo del sistema, dividido y ordenado de la siguiente

manera:

1. Archivos para Docker

2. Archivo busConnector.js

3. Archivo index.js

4. Archivo swagger.js

5. Conjunto de scripts para iniciar o parar el sistema

1.1. Dockerfile

ANEXO A: Código fuente del sistema

46

46

1.2. compose.yaml

47 Almacenamiento y optimización de series temporales de medidas ambientales mediante TimescaleDB

y caché Redis.

 1.3. ecosystem.config.js

1.4. datosEntorno.env

ANEXO A: Código fuente del sistema

48

48

2. busConnector.js

49 Almacenamiento y optimización de series temporales de medidas ambientales mediante TimescaleDB

y caché Redis.

3. index.js

ANEXO A: Código fuente del sistema

50

50

51 Almacenamiento y optimización de series temporales de medidas ambientales mediante TimescaleDB

y caché Redis.

ANEXO A: Código fuente del sistema

52

52

53 Almacenamiento y optimización de series temporales de medidas ambientales mediante TimescaleDB

y caché Redis.

ANEXO A: Código fuente del sistema

54

54

55 Almacenamiento y optimización de series temporales de medidas ambientales mediante TimescaleDB

y caché Redis.

ANEXO A: Código fuente del sistema

56

56

57 Almacenamiento y optimización de series temporales de medidas ambientales mediante TimescaleDB

y caché Redis.

ANEXO A: Código fuente del sistema

58

58

4. Swagger.js

5. Scripts

5.1. vistasMaterializadas.sh

59 Almacenamiento y optimización de series temporales de medidas ambientales mediante TimescaleDB

y caché Redis.

ANEXO A: Código fuente del sistema

60

60

61 Almacenamiento y optimización de series temporales de medidas ambientales mediante TimescaleDB

y caché Redis.

ANEXO A: Código fuente del sistema

62

62

5.2. run.sh

5.3. remove.sh

63 Almacenamiento y optimización de series temporales de medidas ambientales mediante TimescaleDB

y caché Redis.

 ANEXO B: INSTRUCCIONES Y COMANDOS

En el siguiente anexo se adjunta una captura con instrucciones para arrancar el proyecto de 0 y posteriormente

una serie de comandos de utilidad.

1. Instrucciones

2. Comandos

ANEXO B: Instrucciones y comandos

64

64

65 Almacenamiento y optimización de series temporales de medidas ambientales mediante TimescaleDB

y caché Redis.

 REFERENCIAS

[1] E. S. Cardoso, «Github,» [En línea]. Available: https://github.com/enriqueesanchz/redis-cache.

[2] Acer, «Acer Store,» [En línea]. Available: https://store.acer.com/es-es/acer-travelmate-p2-portatil-

tmp215-53-negro-nx-vqbeb-00g?srsltid=AfmBOooJ6zADz10exlAauJ15GrU7L-

xdMCJpHzs2ApBGu_Nza-7vRYSw.

[3] AZ-Delivery, «AZ-Delivery,» [En línea]. Available: https://www.az-

delivery.de/es/products/mikrocontroller-board.

[4] Mkelectrónica, «Mkelectrónica,» [En línea]. Available: https://mkelectronica.com/producto/sensor-

temperatura-humedad/.

[5] Arduino, «Arduino,» [En línea]. Available: https://docs.arduino.cc/.

[6] JavaScript, [En línea]. Available:

https://developer.mozilla.org/es/docs/Learn_web_development/Core/Scripting/What_is_JavaScript.

[7] Node.js, [En línea]. Available: https://nodejs.org/es/about.

[8] Redis, «Redis,» [En línea]. Available: https://redis.io/docs/latest/.

[9] Docker, «Docker,» [En línea]. Available: https://docs.docker.com/get-started/.

[10] Visual Studio Code, «Visual Studio Code,» [En línea]. Available: https://code.visualstudio.com/docs.

[11] RedHat, «Redhat,» [En línea]. Available: https://www.redhat.com/es/topics/internet-of-things/what-is-

iot.

[12] Karpagan Institute of Technology, «Karpagamtech,» [En línea]. Available: https://karpagamtech-ac-

in.translate.goog/iot-evolution-future-

impact/?_x_tr_sl=en&_x_tr_tl=es&_x_tr_hl=es&_x_tr_pto=rq#:~:text=By%20the%202000s%2C%20I

oT%20evolution,manage%20objects%20in%20real%20time..

[13] Q. Jones, «DIGI,» [En línea]. Available: https://es.digi.com/blog/post/iot-based-environmental-

monitoring.

[14] Alpha Telecom Solutions, «alphaenginyeria,» [En línea]. Available: https://alphaenginyeria.com/capas-

arquitectura-iot.

[15] Universidad de Valladolid, «UVA,» [En línea]. Available:

https://www5.uva.es/estadmed/datos/series/series.htm.

[16] MathWorks, «mathworks,» [En línea]. Available: https://la.mathworks.com/discovery/time-series-

analysis.html.

[17] IONOS, «ionos,» [En línea]. Available: https://www.ionos.es/digitalguide/hosting/cuestiones-

Referencias

66

66

tecnicas/que-es-influxdb/.

[18] OpenTSDB, «opentsdb,» [En línea]. Available: https://opentsdb.net/docs/build/html/index.html.

[19] influxdata, «influxdata,» [En línea]. Available: https://www.influxdata.com/comparison/mongodb-vs-

tsdb/#:~:text=from%20various%20sources.-

,IoT%20Data%20Storage,real%2Dtime%20insights%20and%20analytics..

[20] Graphite, «graphite,» [En línea]. Available: https://graphite.readthedocs.io/en/latest/.

[21] QuestdDB, «github,» [En línea]. Available: https://github.com/questdb/questdb.

[22] Prometheus, «prometheus,» [En línea]. Available: https://prometheus.io/docs/introduction/overview/.

[23] IBM, «ibm,» [En línea]. Available: https://www.ibm.com/es-es/topics/postgresql.

[24] Postgresql, «postgresql,» [En línea]. Available: https://www.postgresql.org/about/.

[25] PostgreSQL, «postgresql,» [En línea]. Available: https://www.postgresql.org/docs/current/populate.html.

[26] PostgreSQL, «postgresql,» [En línea]. Available: https://www.postgresql.org/docs/13/release-13.html.

[27] Timescale, «timescale,» [En línea]. Available: https://docs.timescale.com/use-

timescale/latest/hypertables/.

[28] A. Valialkin, «valyala medium,» [En línea]. Available: https://valyala.medium.com/high-cardinality-tsdb-

benchmarks-victoriametrics-vs-timescaledb-vs-influxdb-13e6ee64dd6b.

[29] Y. Hwang, «questdb,» [En línea]. Available: https://questdb.com/blog/comparing-influxdb-timescaledb-

questdb-time-series-databases/.

[30] M. Freedman, «Medium,» [En línea]. Available: https://medium.com/timescale/timescaledb-vs-influxdb-

for-time-series-data-timescale-influx-sql-nosql-36489299877.

[31] J. Blackwood Sewell, «DEV,» [En línea]. Available: https://dev.to/timescale/timescaledb-in-2024-

making-postgres-faster-32f7.

[32] Amazon, «AWS,» [En línea]. Available: https://aws.amazon.com/es/memcached/.

[33] ManageEngine, «site24x7,» [En línea]. Available: https://www.site24x7.com/learn/memcached-vs-redis-

comparison.html.

[34] Amazon, «AWS,» [En línea]. Available: https://aws.amazon.com/es/elasticache/what-is-redis/. [Último

acceso: 05 Junio 2025].

[35] Ignite Apache, «ignite apache,» [En línea]. Available: https://ignite.apache.org/.

[36] Couchbase, «couchbase,» [En línea]. Available: https://www.couchbase.com/es/.

[37] Redis, «redis,» [En línea]. Available: https://redis.io/es/redis-enterprise/estructuras-de-datos/.

67 Almacenamiento y optimización de series temporales de medidas ambientales mediante TimescaleDB

y caché Redis.

 [38] ElWillie, «elwillie,» [En línea]. Available: https://elwillie.es/2022/10/17/redis-persistencia-y-durabilidad/.

[39] P. Khandelwal. [En línea]. Available: https://medium.com/@khandelwal.praful/understanding-redis-

high-availability-cluster-vs-sentinel-420ecaac3236.

[40] R. Contreras, «computing,» [En línea]. Available: https://www.computing.es/informes/contenedores-

software-que-son-ventajas-aplicacion/.

[41] Docker, [En línea]. Available: https://docs.docker.com/engine/network/.

[42] A. Fernández. [En línea]. Available: https://anderfernandez.com/blog/tutorial-docker-compose/.

[43] Autor, «Este es el ejemplo de una cita,» Tesis Doctoral, vol. 2, nº 13, 2012.

[44] O. Autor, «Otra cita distinta,» revista, p. 12, 2001.

